Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3-a^2b+ab^2-6b^3=0\)
\(\Leftrightarrow\left(a-2b\right)\left(a^2+ab+3b^2\right)=0\left(1\right)\)
Vì a>b>0 =>a2+ab+3b2>0 nên từ (1) ta có a=2b
Vậy biểu thức \(A=\frac{a^4-4b^4}{b^4-4a^4}=\frac{16b^4-4b^4}{b^4-64b^4}=\frac{12b^4}{-63b^4}=-\frac{4}{21}\)
Ta có :
\(2a^2+16ab+7b^2=\left(2a+3b\right)^2-2\left(a-b\right)^2\le\left(2a+3b\right)^2\)
=> \(P\ge\frac{25a^2}{2a+3b}+\frac{25b^2}{2b+3c}+\frac{c^2\left(a+3\right)}{a}\)
Áp dụng bất đẳng thức cosi ta có
\(\frac{25a^2}{2a+3b}+2a+3b\ge10a\)
\(\frac{25b^2}{2b+3c}+2b+3c\ge10b\)
\(\frac{c^2\left(a+3\right)}{a}=\left(c^2+1\right)+(\frac{3c^2}{a}+3a)-3a-1\ge2c+6c-3a-1=8c-3a-1\)
Khi đó
\(P\ge\left(10a-2a-3b\right)+\left(10b-2b-3c\right)+\left(8c-3a-1\right)\)
=> \(P\ge5\left(a+b+c\right)-1=14\)
Vậy \(MinP=14\)khi a=b=c=1
Con ma xanh đập 1 phát chết, con ma đỏ đập 2 phát thì chết. Làm sao chỉ với 2 lần đập mà chết cả 2 con?
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
Không mất tính tổng quát, giả sử \(a\ge b\ge c\)
Xét 2 trường hợp :
+) TH : \(\frac{a^2+16bc}{b^2+c^2}\ge\frac{a^2}{b^2}\)
Dễ thấy \(\frac{b^2+16ac}{c^2+a^2}\ge\frac{b^2}{a^2}\); \(\frac{c^2+16ab}{a^2+b^2}\ge\frac{16ab}{a^2+b^2}\)
Cần chứng minh : \(\frac{a^2}{b^2}+\frac{b^2}{a^2}+\frac{16ab}{a^2+b^2}\ge10\)
\(\Leftrightarrow\left(\frac{a^2}{b^2}+\frac{b^2}{a^2}+2\right)+\frac{16}{\frac{a^2+b^2}{ab}}\ge12\)\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)^2+\frac{16}{\frac{a}{b}+\frac{b}{a}}\ge12\)
Đặt \(\frac{a}{b}+\frac{b}{a}=t\)( t \(\ge\)2 )
BĐT trở thành : \(t^2+\frac{16}{t}\ge12\Leftrightarrow t^2+\frac{8}{t}+\frac{8}{t}\ge12\)
Ta có : \(t^2+\frac{8}{t}+\frac{8}{t}\ge3\sqrt[3]{t^2.\frac{8}{t}.\frac{8}{t}}=12\)
+) TH \(\frac{a^2+16bc}{b^2+c^2}< \frac{a^2}{b^2}\Leftrightarrow b^2\left(a^2+16bc\right)< a^2\left(b^2+c^2\right)\)
\(\Leftrightarrow16b^3c< a^2c^2\Leftrightarrow16b^3< a^2c\)
Do \(b\ge c\)nên \(16b^3< a^2c\le a^2b\Rightarrow a^2>16b^2\)
\(\Rightarrow\frac{a^2+16bc}{b^2+c^2}=16+\frac{\left(a^2-16b^2\right)+16c\left(b-c\right)}{b^2+c^2}>16\)
\(\Rightarrow\frac{a^2+16bc}{b^2+c^2}+\frac{b^2+16ac}{c^2+a^2}+\frac{c^2+16ab}{a^2+b^2}>\frac{a^2+16bc}{b^2+c^2}>16>10\)
Bài toán được chứng minh . Dấu "=" xảy ra khi a = b , c = 0 và các hoán vị
P/s : bài này ở trong sách gì mà mk quên rồi
Mình thấy trong sách "Bất đẳng thức cực trị 8 9" của Võ Quốc Bá Cẩn đấy
đặt \(A=\frac{b+c+5}{a+1}+\frac{c+a+4}{b+2}+\frac{a+b+3}{c+3}\)
\(=\frac{12-\left(a+1\right)}{a+1}+\frac{12-\left(b+2\right)}{b+2}+\frac{12-\left(c+3\right)}{c+3}\)
\(=\frac{12}{a+1}+\frac{12}{b+2}+\frac{12}{c+3}-3\ge\frac{108}{a+b+c+1+2+3}-3=\frac{108}{12}-3=6\)(Q.E.D)
dấu = xảy ra khi a+1=b+2=c+3<=>a=3;b=2;c=1