Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
lim (x-->0) \(\frac{\sqrt[3]{ax+1}-\sqrt{1-bx}}{x}=2\)
<=> lim ( x-->0) \(\left(\frac{\sqrt[3]{ax+1}-1}{x}+\frac{1-\sqrt{1-bx}}{x}\right)=2\)
<=> lim (x-->0)\(\left(\frac{a}{\sqrt[3]{\left(ax+1\right)^2}+\sqrt[3]{ax+1}+1}+\frac{b}{\sqrt{1-bx}+1}\right)=2\)
<=> \(\frac{a}{3}+\frac{b}{2}=2\)
mà a + 3b = 3
=> a= 3; b = 2
=> A là đáp án sai.
\(a=\lim\limits_{x\rightarrow1}\frac{\left(\sqrt{3x+1}-\sqrt{x+3}\right)\left(\sqrt{3x+1}+\sqrt{x+3}\right)}{\left(x-1\right)\left(x+1\right)\left(\sqrt{3x+1}+\sqrt{x+3}\right)}=\lim\limits_{x\rightarrow1}\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(\sqrt{3x+1}+\sqrt{x+3}\right)}\)
\(=\lim\limits_{x\rightarrow1}\frac{2}{\left(x+1\right)\left(\sqrt{3x+1}+\sqrt{x+3}\right)}=\frac{2}{2.4}=\frac{1}{4}\)
\(b=\frac{3}{0}=+\infty\)
\(c=\frac{-13}{0}=-\infty\)
\(\lim\limits_{x\rightarrow3^+}\frac{7x-1}{x-3}=\frac{20}{0}=+\infty\)
\(\lim\limits_{x\rightarrow5^+}\frac{11-2x}{x-5}=\frac{1}{0}=+\infty\)
\(\lim\limits_{x\rightarrow3^-}\frac{-x-3}{3-x}=\frac{-6}{0}=-\infty\)
Lời giải:
Ta có:
\(f'(x)=3x^2+2(a-1)x+2\)
Theo định lý về dấu của tam thức bậc 2, để \(f'(x)>0\) với mọi \(x\in\mathbb{R}\) thì \(\Delta'=(a-1)^2-6<0\)
\(\Leftrightarrow -\sqrt{6}< a-1< \sqrt{6}\)
\(\Leftrightarrow 1-\sqrt{6}< a< 1+\sqrt{6}\)
Đáp án B
ĐK: \(x\ge-2\)
Bất phương trình <=> \(\left(x^3+6x^2+12x+8\right)+2\sqrt{\left(x+2\right)^3}+1-9x^2-18x-9\ge0\)
<=> \(\left(\sqrt{\left(x+2\right)^3}+1\right)^2-\left(3x+3\right)^2\ge0\)
<=> \(\left(\sqrt{\left(x+2\right)^3}-3x-2\right)\left(\sqrt{\left(x+2\right)^3}+3x+4\right)\ge0\). Hướng dẫn đến đây nhé! Dạng này quen thuộc rồi, em chia trường hợp rồi làm nha!
Đặt \(\left\{{}\begin{matrix}a+b=8+x\\b=3+y\end{matrix}\right.\left(x,y\in N,xy\ne0\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5+x-y\\b=3+y\end{matrix}\right.\)
Khi đó:
\(27a^2+10b^3=27\left(5+x-y\right)^2+10\left(3+y\right)^3\)
\(=27\left(25+x^2+y^2+10x-2xy-10y\right)+10\left(27+y^3+9y^2+27y\right)\)
\(=945+27\left(x^2+y^2-2xy\right)+270x+10y^3+90y^{2\text{}}\)
\(=945+27\left(x-y\right)^2+270x+10y^3+90y^2>945\)
Vậy \(27a^2+10b^3>945\)