K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2023

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) ⇒ \(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}\) 

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x^2}{a^2}\)  = \(\dfrac{y^2}{b^2}\) = \(\dfrac{z^2}{c^2}\) = \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\) = \(\dfrac{x^2+y^2+z^2}{1}\) = \(x^2+y^2+z^2\) (1)

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}\) = \(\dfrac{x+y+z}{1}\) = \(x+y+z\)

\(\dfrac{x}{a}\) = \(x+y+z\) ⇒ \(\dfrac{x^2}{a^2}\) = (\(x+y+z\)) (2) 

Từ (1) và (2) ta có :

\(\dfrac{x^2}{a^2}\) = \(x^2\) + y2 + z2 = ( \(x+y+z\))2 (đpcm)

17 tháng 3 2023

ax=by=cz ⇒ �2�2=�2�2=�2�2a2x2=b2y2=c2z2 

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

�2�2a2x2  = �2�2b2y2 = �2�2c2z2 = �2+�2+�2�2+�2+�2a2+b2+c2x2+y2+z2 = �2+�2+�211x2+y2+z2 = �2+�2+�2x2+y2+z2 (1)

��=��=��ax=by=cz Áp dụng tính chất dãy tỉ số bằng nhau ta có:

��=��=��=�+�+��+�+�ax=by=cz=a+b+cx+y+z = �+�+�11x+y+z = �+�+�x+y+z

��ax = �+�+�x+y+z ⇒ �2�2a2x2 = (�+�+�x+y+z) (2) 

Từ (1) và (2) ta có :

�2�2a2x2 = �2x2 + y2 + z2 = ( �+�+�x+y+z)2 (đpCm)

9 tháng 10 2019

x:y:z=a:b:c => x=ak ; y=bk ; z=ck (k thuộc R)

Vì a+b+c=a^2+b^2+c^2=1 => (a+b+c)^2=a^2+b^2+c^2=1

=> k^2 . (a+b+c)^2= k ^2 . (a^2+b^2+c^2)

=> (ak+bk+ck)^2 =(ak)^2+(bk)^2+(ck)^2 

=> (x+y+z)^2=x^2+y^2+z^2

9 tháng 10 2019

Dùng tính chất dãy tỉ số bằng nhau 

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\)\(\Rightarrow\left(x+y+z\right)^2=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\Rightarrow DPCM\)

7 tháng 11 2018

Mình cần gấp ai đó giúp mình đi

7 tháng 11 2018

Do \(a^x=bc;b^y=ca;c^z=ab\Rightarrow a^x.b^y.c^z=bc.ca.ab=a^2.b^2.c^2\)\(\Leftrightarrow\frac{a^2.b^2.c^2}{a^x.b^y.c^z}=1\Rightarrow\frac{a^2}{a^x}.\frac{b^2}{b^y}.\frac{c^2}{c^z}=1\)

Do a;b;c;x;y;z>0;a;b;c>1\(\Rightarrow\hept{\begin{cases}\frac{a^2}{a^x}=1\\\frac{b^2}{b^y}=1\\\frac{c^2}{c^z}=1\end{cases}}\Rightarrow\hept{\begin{cases}a^2=a^x\\b^2=b^y\\c^2=c^z\end{cases}}\Rightarrow x=y=z=2\)

\(\Rightarrow\hept{\begin{cases}x+y+z+2=2+2+2+2=4\\x.y.z=2.2.2=4\end{cases}}\Rightarrow x+y+z+2=xyz\)

30 tháng 12 2018

khó quá

30 tháng 12 2018

mình mới họclớp 5 à khó quá

30 tháng 10 2019

Từ đẳng thức x : y : z = a : b : c

=> \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow\hept{\begin{cases}x=ak\\y=bk\\z=ck\end{cases}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z=\frac{ak+bk+ck}{a+b+c}=k\)

=> x + y + z = a + b + c = k = 1

Khi đó : (x + y + z)2 = 12 = 1

x2 + y2 + z2 = (ak)2 + (bk)2 + (ck)2

                    = a2.k2 + b2.k2 + c2.k2

                    = k2.(a2 + b2 + c2)

                    = k2 = 12 = 1

=> x + y + z = x2 + y2 + z2 (đpcm)