Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a+b-c}{c}\)=\(\frac{b+c-a}{a}\)=\(\frac{c+a-b}{b}\)=\(\frac{a+b-c+b+c-a+c+a-b}{a+b+c}\)=\(\frac{a+b+c}{a+b+c}\)=1.Ta có\(\frac{a+b-c}{c}\)=1=>a+b-c=c
=>a+b=2c
\(\frac{b+c-a}{a}\)=1=>b+c-a=a
=>b+c=2a
\(\frac{c+a-b}{b}\)=1=>c+a-b=b
=>c+a=2b
B=(1+\(\frac{b}{a}\))+(1+\(\frac{a}{c}\))+(1+\(\frac{c}{b}\))=(Quy đồng lên cộng như bình thường nha)\(\frac{a+b}{a}\).\(\frac{c+a}{c}\).\(\frac{b+c}{b}\)
(Thay từ cái trên kia kìa bạn ạ vào biểu thức thì ta có) =\(\frac{2a.2b.2c}{abc}\)
=\(\frac{8\left(abc\right)}{abc}\)
=8
Bài làm:
Vì a,b,c khác 0 nên:
Ta có: \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\)
\(\Leftrightarrow\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}\) (1) (chia cả 3 vế cho abc)
Áp dụng t/c dãy tỉ số bằng nhau ta được:
\(\left(1\right)=\frac{x+y-z-x}{ab-ca}=\frac{y+z-x-y}{bc-ab}=\frac{z+x-y-z}{ca-bc}\)
\(=\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
=> đpcm
Bài làm:
Vì a,b,c khác 0 nên:
Ta có: a(y+z)=b(z+x)=c(x+y)�(�+�)=�(�+�)=�(�+�)
⇔y+zbc=z+xca=x+yab⇔�+���=�+���=�+��� (1) (chia cả 3 vế cho abc)
Áp dụng t/c dãy tỉ số bằng nhau ta được:
(1)=x+y−z−xab−ca=y+z−x−ybc−ab=z+x−y−zca−bc(1)=�+�−�−���−��=�+�−�−���−��=�+�−�−���−��
=y−za(b−c)=z−xb(c−a)=x−yc(a−b)=�−��(�−�)=�−��(�−�)=�−��(�−�)
=> đpcm
TH1: Nếu a+b+c \(\ne0\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{a+b+c}=1\)
mà \(\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1=2\)
\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=2\)
Vậy \(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(\frac{a+b}{a}\right)\left(\frac{a+c}{c}\right)\left(\frac{b+c}{b}\right)=8\)
TH2 : Nếu a+b+c = 0
áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{a+b+c}=0\)
mà \(\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1=1\)
\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=1\)
vậy \(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(\frac{a+b}{a}\right)\left(\frac{a+c}{c}\right)\left(\frac{b+c}{b}\right)=1\)
\(\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)
\(\Leftrightarrow\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)
TH1: a+b+c=0
\(\Rightarrow\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{cases}}\Rightarrow B=\left(1-\frac{a+c}{a}\right).\left(1-\frac{b+c}{c}\right).\left(1-\frac{a+b}{b}\right)=-1\)
TH2: a+b+c khác 0
\(\Rightarrow a=b=c\Rightarrow B=\left(1+\frac{a}{a}\right).\left(1+\frac{a}{a}\right).\left(1+\frac{a}{a}\right)=2^3=8\)
Ta có :
a^xyz=(a^x)^yz=(bc)^yz
=b^yz.c^yz
=(b^y)^z.(c^z)^y
=(ca)^z.(ab)^y
=c^z.a^z.a^y.b^y
=(bc).a^z.a^y.(ca)
=a^2.a^y.a^z.(bc)
=a^2.a^y.a^z.a^x
=a^(x+y+z+2)
=>xyz=x+y+z+2
Ta có: \(\frac{a}{x}+\frac{y}{b}=1\)
\(\rightarrow\frac{a}{x}\cdot\frac{b}{y}+\frac{y}{b}\cdot\frac{b}{y}=1\cdot\frac{b}{y}\)
\(\rightarrow\frac{ab}{xy}+1=\frac{b}{y}\left(1\right)\)
Ta có: \(\frac{b}{y}+\frac{z}{c}=1\)
\(\rightarrow\frac{b}{y}=1-\frac{z}{c}\left(2\right)\)
Từ (1) và (2) \(\rightarrow\frac{ab}{xy}+1=1-\frac{z}{c}\)
\(\rightarrow\frac{ab}{xy}=\frac{-z}{c}\) \(\rightarrow abc=-xyz\)
\(\rightarrow abc+xyz=0\)