Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) Ta có :
\(a+b+c=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)^3=0^3\)
\(\Leftrightarrow\)\(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(a+b+c=0\)\(\Rightarrow\)\(\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
\(\Leftrightarrow\)\(a^3+b^3+c^3+3.\left(-c\right)\left(-a\right)\left(-b\right)=0\)
\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\)\(a^3+b^3+c^3=3abc\) ( đpcm )
Vậy \(a^3+b^3+c^3=3abc\)
Chúc bạn học tốt ~
a, a+b+c=0 => a+b=-c
=>(a+b)3=(-c)3
=>a3+3a2b+3ab2+b3=-c3
=>a3+3ab(a+b)+b3=-c3
Mà a+b=-c
=>a3-3abc+b3=-c3
=>a3+b3+c3=3abc (đpcm)
b, \(P=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\frac{a^3+b^3+c^3}{abc}\)
mà a3+b3+c3=3abc (bài a)
\(\Rightarrow P=\frac{3abc}{abc}=3\)
Vậy P=3
a2+b2+c2=1a2+b2+c2=1
|a|;|b|;|c|≤1|a|;|b|;|c|≤1
−1≤a;b;c≤1−1≤a;b;c≤1
(a+1)(b+1)(c+1)≥0(a+1)(b+1)(c+1)≥0
ab+bc+ac+a+b+c+1+abc≥0(1)ab+bc+ac+a+b+c+1+abc≥0(1)
Mặt khác ta có :
(1+a+b+c)2≥0(1+a+b+c)2≥0
a2+b2+c2+2(ab+bc+ac)+2(a+b+c)+1≥0a2+b2+c2+2(ab+bc+ac)+2(a+b+c)+1≥0
2(a+b+c+ab+bc+ac+1)≥02(a+b+c+ab+bc+ac+1)≥0
(a+b+c+ab+bc+ac+1)≥0(2)(a+b+c+ab+bc+ac+1)≥0(2)
Ta có : \(a^2+b^2+c^2=1\Rightarrow\left|a\right|;\left|b\right|;\left|c\right|\le1\)
\(\Rightarrow-1\le a;b;c\le1\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge0\)
\(\Rightarrow a+b+c+ab+ac+bc+abc+1\ge0\left(1\right)\)
Lại có : \(\left(a+b+c+1\right)^2\ge0\)
\(\Leftrightarrow\left(a+b+c\right)^2+2\left(a+b+c\right)+1\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac+a+b+c\right)+1\ge0\)
\(\Leftrightarrow2\left(ab+bc+ac+a+b+c+1\right)\ge0\)
\(\Leftrightarrow ab+bc+ac+a+b+c+1\ge0\left(2\right)\)
Từ ( 1 ) ; ( 2 ) \(\Rightarrow abc+2\left(ab+bc+ac+a+b+c+1\right)\ge0\left(đpcm\right)\)
\(pt\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow a=b=c\Leftrightarrow\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)