K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2017

\(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc=3ab+3bc+3ac\)

\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\)

\(\Leftrightarrow a^2+b^2+c^2-ab-ac-bc=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow a=b=c\) (đpcm)

15 tháng 7 2017

\(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\) 

\(\Leftrightarrow a^2+b^2+c^2+3ab+3bc+3ac=3ab+3bc+3ac\) 

\(\Leftrightarrow a^2+b^2+c^2=3ab+3bc+3ac-3ab-3bc-3ac\) 

\(\Leftrightarrow a^2+b^2+c^2=0\) 

vì \(a^2\ge0;b^2\ge0;c^2\ge0\Rightarrow a=b=c=0\Rightarrowđpcm\)

a+b+c=0

=>(a+b+c)3=0

=>a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+6abc=0

=>a3+b3+c3+(3a2b+3ab2+3abc)+(3b2c+3bc2+3abc)+(3a2c+3ac2+3abc)-3abc=0

=>a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc

Do a+b+c=0

=>a3+b3+c3=3abc(ĐPCM)

27 tháng 9 2017

\(\left(a+b+c\right)^2=3.\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3ab+3bc+3ac\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Leftrightarrow a-b=0;b-c=0;c-a=0\)

Vậy a=b=c

17 tháng 8 2019

2 bao gạo cân nặng 237 kg nếu gấp bao thứ nhất lên 3 lần gấp bao thứ 2 lên 2 lần thì được 611 hỏi mỗi bao gạo cân nặng bao nhiêu kg

17 tháng 8 2019

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3\left(a^2b+b^2a\right)-3abc+c^3\) 

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\) 

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

3 tháng 11 2014

a) Ta có: a2+b2+c2=ab+bc+ca

=>2(a2+b2+c2)=2(ab+bc+ca)

<=>2a2+2b2+2c2=2ab+2bc+2ca

<=>2a2+2b2+2c2-2ab-2bc-2ca=0

<=>a2+a2+b2+b2+c2+c2-2ab-2bc=2ca=0

<=>(aa-2ab+b2)+(b2-2bc+b2)+(a2-2ca+c2)=0

<=>(a-b)2+(b-c)2+(a-c)2=0

=>hoặc (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0<=>a-b=0 hoặc b-c=0 hoặc a-c=0<=>a=b hoặc b=c hoặc a=c

=>a=b=c

24 tháng 4 2016

không biết

:) :)

26 tháng 5 2015

Dùng hằng đang thuc la ra~~~daif qua nen ngai viet

26 tháng 5 2015

p giúp mk câu b đk k? Mk đọc mãi cũng không hiểu lắm câu a thì làm đk r

27 tháng 8 2020

a) Ta có: \(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Mà \(Vt\ge0\left(\forall a,b,c\right)\) nên dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Rightarrow a=b=c\)

27 tháng 8 2020

Ta có : a2 + b2 + c2 = ab + bc + ca

=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca

=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0

= (a2 - 2ab + b2) +  (b2 - 2bc + c2) + (c2 - 2ca + a2) = 0

=> (a - b)2 + (b - c)2 + (c - a)2 = 0

=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Rightarrow a=b=c\left(\text{đpcm}\right)\)

b) Ta có :  2(x2 + t2) + (y + t)(y - t) = 2x(y + t)

=> 2x2 + 2t2 + y2 - t2 = 2xy + 2t

=> 2x2 + t2 + y2 = 2xt + 2xy

=> 2x2 + t2 + y2 - 2xt - 2xy = 0

=> (x2 - 2xy + y2) + (x2 + t2 - 2xt)  = 0

=> (x - y)2 + (x - t)2 = 0

=> \(\hept{\begin{cases}x-y=0\\x-t=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y\\x=t\end{cases}}\Rightarrow x=y=t\left(\text{đpcm}\right)\)

c) Ta có a + b + c = 0 

=> (a + b + c)2 = 0

=> a2 + b2 + c2 + 2ab + 2bc + 2ca = 0

=> a2 + b2 + c2 + 2(ab + bc + ca) = 0

=> a2 + b2 + c2 = 0

=> a = b = c = 0

Khi đó A = (0 - 1)2003 + 02004 + (0 + 1)2005

= - 1 + 0 + 1 = 0

Vậy A = 0

22 tháng 11 2018

Ta có :

\(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2-3ab\right]\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(\Leftrightarrowđpcm\)

3 tháng 7 2015

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=\left(a+b+c\right)^3\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2\right)-3ab\left(a+b+c\right)=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

20 tháng 6 2018

Nhưng theo mình thấy a^3+b^3+c^3 không thể đổi thành (a+b+c)^3

7 tháng 6 2016

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)

\(=\left(a+b+c\right)^3\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

7 tháng 6 2016

A = a3 + b3 +c3 -3abc thành nhân tử.

Lời giải:

Từ (a+b)3= a3 + 3a2b +3ab2 + b3

= a3 + b3 + 3ab (a+b)

Ta suy ra: a3 + b3 = (a+b)3 - 3ab (a+b) (1)

áp dụng hằng đẳng thức (1) vào giải bài toán ta có:

A = (a3 + b3) + c3 - 3abc

= (a+b)3 - 3ab (a+b) + c3 - 3abc

= (a+b)3 + c3 - 3ab (a+b) - 3abc

 = (a+b+c) (a2 +2ab + b2 -ac - bc + c2 - 3ab)

= (a+b+c) (a2+ b2 +c2 -ab - bc - ac) (*)