Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left(a-\frac{6}{a+1}\right)+\left(2b-\frac{3}{b+1}\right)+\left(3c-\frac{2}{c+1}\right)\)
\(M=\left(a+2b+3c\right)-6\left(\frac{1}{a+1}+\frac{1}{2b+2}+\frac{1}{3c+3}\right)\)
\(M\le6-\frac{6.\left(1+1+1\right)^2}{a+1+2b+2+3c+3}\)
\(M\le6-\frac{6.9}{6+6}=6-\frac{9}{2}=\frac{3}{2}\)
Đẳng thức xảy ra khi \(a=3;b=1;c=\frac{1}{3}\)
\(P=\frac{a^2-1+1}{a-1}+\frac{2\left(b^2-1+1\right)}{b-1}+\frac{3\left(c^2-1+1\right)}{c-1}\)
\(P=a-1+2+\frac{1}{a-1}+2\left(b-1\right)+4+\frac{2}{b-1}+3\left(c-1\right)+6+\frac{3}{c-1}\)
=>\(P=a-1+\frac{1}{a-1}+2\left(b-1\right)+\frac{2}{b-1}+3\left(c-1\right)+\frac{3}{c-1}+12\)
ap dung bdt co si ta co
xay ra dau = khi va chi khi a=b=c=2
Ta có \(\left(x-2\right)^2\ge0\forall x\Leftrightarrow x^2-4x+4\ge0\Leftrightarrow x^2\ge4\left(x-1\right).\)
\(\Rightarrow\frac{x^2}{x-1}\ge4\)(với x>1) Dấu '=' xảy ra khi x-2=0 <=> x=2 (TMĐK)
Áp dụng bất đẳng thức trên cho a,b,c >1 ta được
\(\frac{a^2}{a-1}\ge4\); \(\frac{2b^2}{b-1}\ge2.4=8\); \(\frac{2017c^2}{c-1}\ge2017.4=8068\)
Suy ra \(M=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{2017c^2}{c-1}\ge4+8+8068=8080\)
Vậy giá trị nhỏ nhất của M=8080 khi a=b=c=2
\(P=\frac{2018}{a^2+b^2+c^2}+\frac{2018}{ab+bc+ac}-\frac{2017}{a^2+b^2+c^2}\)
\(P\ge2018\left(\frac{4}{a^2+b^2+c^2+ab+bc+ac}\right)-\frac{2017}{a^2+b^2+c^2}\)
\(P\ge\frac{2018.8}{\left(a+b+c\right)^2}-\frac{2017}{a^2+b^2+c^2}=\frac{2018.8}{9}-\frac{2017}{a^2+b^2+c^2}\)
Vì \(9=\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\Rightarrow a^2+b^2+c^2\ge3\)
\(P\ge\frac{2018.8}{9}-\frac{2017}{3}=...\)
P min = ... khi a=b=c = 1
Tử là mũ 2 thật hả bạn. Mũ 3 thì giải được còn mũ 2 thì vẫn chưa nghĩ ra