\(\frac{1}{a^5+b^2+c^2}+\frac{1}{b^5+a^2+c^2}+\frac{1}{c^5+a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2017

cái này chỉ theo ý kiến tớ nhé:

ta có: \(\left(c-a-b\right)^2\ge0\)

=> \(a^2+b^2+c^2\ge2ac+2bc-2ab\)

<=> \(\frac{5}{6}\ge ac+bc-ab\)

<=> \(1>ac+bc-ab\)

abc>0 chia cho hai vế

\(\frac{1}{abc}>\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\)

Ta có: \(\left(a+b-c\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab-bc-ca\right)\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge2ca+2bc-2ab\)(1) 

Mặt khác \(a^2+b^2+c^2=\frac{5}{3}\Leftrightarrow a^2+b^2+c^2< 2\)(2) 

Từ (1)(2) \(\Rightarrow2bc+2ca-2ab\le a^2+b^2+c^2< 2\)

Do a,b,c>0 \(\Leftrightarrow\frac{2bc+2ca-2ab}{2abc}< \frac{2}{2abc}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)

29 tháng 9 2016

Ta có :

\(a^2+b^2+c^2-2bc-2ca+2ab\)

\(=\left(a+b-c\right)^2\ge0\)

\(\Rightarrow a^2+b^2+c^2-2bc-2ca+2ab\ge0\)

\(\Rightarrow a^2+b^2+c^2\ge2bc+2ca-2ab\)

Dấu bằng xảy ra khi \(a+b=c\)

Mà \(\frac{5}{3}< \frac{6}{3}=2\)

\(\Rightarrow a^2+b^2+c^2< 2\)

\(\Rightarrow2bc+2ac-2ab\le a^2+b^2+c^2< 2\)

\(\Rightarrow2bc+2ac-2ab< 2\)

Do a ,b , c > 0

\(\Rightarrow\frac{2bc+2ac-2ab}{2abc}< \frac{2}{2abc}\)

\(\Rightarrow\frac{2bc}{2abc}+\frac{2ac}{2abc}-\frac{2ab}{2abc}< \frac{2}{2abc}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)

Vậy ...

29 tháng 9 2016

Ta có:\(\left(a+b-c\right)^2\ge0\)(với a,b,c > 0)

<=> \(a^2+b^2+c^2+2ab-2bc-2ca\ge0\)

<=> \(bc+ac-ab\le\frac{a^2+b^2+c^2}{2}=\frac{5}{6}< 1\)

Chia 2 vế của bđt cho abc >0 ta dc

\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)

NV
19 tháng 6 2019

a/ BĐT sai, cho \(a=b=c=2\) là thấy

b/ \(VT=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)

\(VT\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{3\left(a+b+c\right)^2}=\frac{1}{3}\left(a^2+b^2+c^2\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

c/ Tiếp tục sai nữa, vế phải là \(\frac{3}{2}\) chứ ko phải \(2\), và hy vọng rằng a;b;c dương

\(VT=\frac{a^2}{abc.b+a}+\frac{b^2}{abc.c+b}+\frac{c^2}{abc.a+c}\ge\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)+a+b+c}\)

\(VT\ge\frac{9}{3abc+3}\ge\frac{9}{\frac{3\left(a+b+c\right)^3}{27}+3}=\frac{9}{\frac{3.3^3}{27}+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
23 tháng 6 2019

Ta có:

\(a^3+b^3+b^3\ge3ab^2\) ; \(b^3+c^3+c^3\ge3bc^2\) ; \(c^3+a^3+a^3\ge3ca^2\)

Cộng vế với vế \(\Rightarrow a^3+b^3+c^3\ge ab^2+bc^2+ca^2\)

\(\frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}=\frac{a^6}{ab^2}+\frac{b^6}{bc^2}+\frac{c^6}{ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab^2+bc^2+ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=a^3+b^3+c^3\)

2 tháng 9 2019

Bài 1:

a) Áp dụng BĐT Cô-si:

\(VT=a-1+\frac{1}{a-1}+1\ge2\sqrt{\frac{a-1}{a-1}}+1=2+1=3\)

Dấu "=" xảy ra \(\Leftrightarrow a=2\).

b) BĐT \(\Leftrightarrow a^2+2\ge2\sqrt{a^2+1}\)

\(\Leftrightarrow a^2+1-2\sqrt{a^2+1}+1\ge0\)

\(\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\) ( LĐ )

Dấu "=" xảy ra \(\Leftrightarrow a=0\).

Bài 2: tương tự 1b.

2 tháng 9 2019

Bài 3:

Do \(a,b,c\) dương nên ta có các BĐT:

\(\frac{a}{a+b+c}< \frac{a}{a+b}< \frac{a+c}{a+b+c}\)

Tương tự: \(\frac{b}{a+b+c}< \frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{a+b+c}< \frac{c}{c+a}< \frac{c+b}{a+b+c}\)

Cộng theo vế 3 BĐT:

\(\frac{a+b+c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{2\left(a+b+c\right)}{a+b+c}\)

\(\Leftrightarrow1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)( đpcm )

2 tháng 12 2018

Ta có:\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)\)

Để \(a^2+b^2+c^2=\frac{5}{3}\) thì \(ab+bc+ca=0\)

Mà \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc}{abc}+\frac{ca}{abc}+\frac{ab}{abc}=\frac{bc+ca+ab}{abc}\)

Thay ab + bc + ca = 0 vào,ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc+ca+ab}{abc}=\frac{0}{abc}=0\)

Mà a,b,c > 0 nên abc > 0 do đó \(\frac{1}{abc}>0\) hay \(\frac{1}{abc}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) hay \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}< \frac{1}{abc}\) 

Suy ra đpcm.

2 tháng 12 2018

bn ơi tại sao ab+bc+ac=0

mk k hiểu chỗ đó