Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b+c=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)=0
\(\Leftrightarrow\)\(a^3+ab^2+ac^2-a^2b-a^2c-abc+a^2b+b^3+bc^2-ab^2-\)
\(abc-b^2c+ca^2+bc^2+c^3-abc-ac^2-bc^2\)=0
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\Leftrightarrow a^3+b^3-3abc=-c^3\)
a/ \(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^3=0\)
\(\Leftrightarrow\left[\left(a+b\right)+c\right]^3=0\)
\(\Leftrightarrow\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+3a^2b+3ab^2+3bc^2+3b^2c+3a^2c+3ac^2+6abc=0\)
\(\Leftrightarrow a^3+b^3+c^3+\left(3a^2b+3ab^2+3abc\right)+\left(3bc^2+3b^2c+3abc\right)+\left(3ac^2+3a^2c+3abc\right)-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3+3abc\left(a+b+c\right)+3bc\left(a+b+c\right)+3ac\left(a+b+c\right)-3abc=0\)
Mà \(a+b+c=0\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\left(đpcm\right)\)
1 ) Ta có :
\(a+b-c=0\Leftrightarrow a+b=c\Leftrightarrow\left(a+b\right)^3=c^3\)
\(\Rightarrow a^3+b^3-c^3=a^3+b^3-\left(a+b\right)^3\)
\(\Rightarrow a^3+b^3-c^3=a^3+b^3-3a^2b-3b^2a-b^3\)
\(\Rightarrow a^3+b^3-c^3=-3a^2b-3b^2a\)
\(\Rightarrow a^3+b^3-c^3=-3ab\left(a+b\right)\)
\(\Rightarrow a^3+b^3-c^3=-3abc\left(đpcm\right)\)
2 ) Ta có :
\(a-b+c=0\Leftrightarrow c=b-a\Leftrightarrow c^3=\left(b-a\right)^3\)
\(\Rightarrow a^3-b^3+c^3=a^3-b^3+\left(b-a\right)^3\)
\(\Rightarrow a^3-b^3+c^3=a^3-b^3+b^3-3a^2b+3b^2a-a^3\)
\(\Rightarrow a^3-b^3+c^3=-3a^2b+3b^2a\)
\(\Rightarrow a^3-b^3+c^3=-3ab\left(a-b\right)\)
\(\Rightarrow a^3-b^3+c^3=3ab\left(b-a\right)\)
\(\Rightarrow a^3-b^3+c^3=3abc\left(đpcm\right)\)
1 ) Bổ sung dấu \(\Rightarrow\) thứ 2 :
\(\Rightarrow...=a^3+b^3-a^3-3a^2b-3b^2a-b^3\)
Áp dụng Bdt cosi 3 số dương ta có"
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Dấu = khi a=b=c
Đpcm