\(S=\frac{a}{1+b^2c}+\frac{b}{1+c^2d}+\frac{c}{1+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2016

\(N=\frac{a}{1+b^2c}+\frac{b}{1+c^2d}+\frac{c}{1+d^2a}+\frac{d}{1+a^2b}\)

Áp dụng BĐT Cauchy ta có:

\(\frac{a}{1+b^2c}=a-\frac{ab^2c}{1+b^2c}\)

\(\ge a-\frac{ab^2c}{2b\sqrt{c}}=a-\frac{ab\sqrt{c}}{2}=a-\frac{b\sqrt{ac}\sqrt{a}}{2}\)

\(\ge a-\frac{b\left(ac+c\right)}{4}\).Suy ra \(\frac{a}{1+b^2c}\ge a-\frac{1}{4}\cdot\left(ab+abc\right)\)

Tương tự ta có:

\(\frac{b}{a+c^2d}\ge b-\frac{1}{4}\left(bc+bcd\right)\)

\(\frac{c}{1+d^2a}\ge c-\frac{1}{4}\left(cd+cda\right)\)

\(\frac{d}{1+a^2b}\ge d-\frac{1}{4}\left(da+dab\right)\)

Do đó: \(S=\frac{a}{1+b^2c}+\frac{b}{1+c^2d}+\frac{c}{1+d^2a}+\frac{d}{1+a^2b}\)

\(\ge a+b+c+d-\frac{1}{4}\left(ab+bc+cd+da+abc+bcd+cda+dab\right)\)

\(=4-\frac{1}{4}\left(ab+bc+cd+da+abc+bcd+cda+dab\right)\)

Ta có:

\(ab+bc+cd+da\le\frac{1}{4}\left(a+b+c+d\right)^2=4\)

\(abc+bcd+cda+dab\le\frac{1}{16}\left(a+b+c+d\right)^3=4\)

nên \(S\ge4-\frac{1}{4}\cdot\left(4+4\right)=2\)(Đpcm)

Dấu = khi \(a=b=c=d=1\)

 

 

 

7 tháng 9 2016

tick đê =))

21 tháng 12 2016

\(A=\left(\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\left(ĐK:x>0;x\ne1;x\ne4\right)\)

\(=\frac{\sqrt{x}-\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}:\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{2}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{x-1-x+4}\)

\(=\frac{2\left(\sqrt{x}+1\right)}{3\sqrt{x}}\)

27 tháng 9 2016

\(\frac{1}{xy}\cdot\sqrt{\frac{x^2y^2}{2}}=\frac{1}{xy}\cdot\frac{xy}{\sqrt{2}}=\frac{1}{\sqrt{2}}\)

\(\frac{3}{a^2-b^2}\cdot\sqrt{\frac{2\left(a+b\right)^2}{9}}=\frac{3}{a^2-b^2}\cdot\frac{\sqrt{2}\left(a+b\right)}{3}=\frac{\sqrt{2}}{a-b}\)

\(\left(x-2y\right)\sqrt{\frac{4}{\left(2y-x\right)^2}}=\left(x-2y\right)\cdot\frac{2}{\left(x-2y\right)}=2\)

 

30 tháng 9 2016

câu 1 chưa có điều kiện x y mà lại không cho giá trị tuyệt đối 

 

26 tháng 3 2017

Dùng BĐT Bunhiacopski:

Ta có: \(ac+bd\le\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\)

\(\left(a+c\right)^2+\left(b+d\right)^2\)

\(=a^2+b^2+2\left(ac+bd\right)+c^2+d^2\)

\(\le\left(a^2+b^2\right)+2\sqrt{a^2+b^2}.\sqrt{c^2+d^2}+c^2+d^2\)

\(\Rightarrow\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\le\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\) (Đpcm)

26 tháng 3 2017

Câu hỏi của Hoàng Khánh Linh - Toán lớp 8 - Học toán với OnlineMath copy nhớ ghi nguồn

1 tháng 10 2016

A B C D M N H

Kẻ DH vuông góc với DN tại D

Xét ΔADM và ΔCDH có:

  ^DAM=^DCH=90(gt)

   AD=DC(gt)

  ^ADM=^CDH (cùng phụ với ^NDC)

=>ΔADM=ΔCDH(g.c.g)

=>DM=DH

Xét ΔDHN vuông tại D(gt).Có:

 \(\frac{1}{DH^2}+\frac{1}{DN^2}=\frac{1}{DC^2}=\frac{1}{a^2}\)

hay \(\frac{1}{DM^2}+\frac{1}{DN^2}=\frac{1}{a^2}\)

 

 

26 tháng 6 2016

A= 1, B= 2, B=3

x= 8, y=5, z=3

Ax + By = Cz = 1 x 8 + 2 x 5 = 3 x 6

A B C có bội số chung nhỏ nhất là 6

27 tháng 6 2016

hahathanks

13 tháng 10 2016

\(\frac{4}{\sqrt{5}-1}=\frac{4\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}=\frac{4\left(\sqrt{5}+1\right)}{4}=\sqrt{5}+1\)

Chúc bạn học tốt .hihi

13 tháng 10 2016

=\(\frac{4\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}\)=\(\frac{4\left(\sqrt{5}+1\right)}{5-1}\)=\(\sqrt{5}+1\)