Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)
Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)
Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)
Bài 2: Thêm đk a,b,c >0.
Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.
Bài 3: Nó sao sao ấy ta?
Bài 2:
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)
\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:
\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)
Thiết lập các BĐT tương tự:
\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)
Dấu "=" không xảy ra nên ta có ĐPCM
Lưu ý: lần sau đăng từng bài 1 thôi nhé !
1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:
\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)
TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)
\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)
Cộng vế với vế ta được:
\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)
Ta có: \(\dfrac{b}{\sqrt{a+b}-\sqrt{a-b}}=\dfrac{b}{\dfrac{\left(a+b\right)-\left(a-b\right)}{\sqrt{a+b}+\sqrt{a-b}}}\)
\(=\dfrac{b}{\dfrac{a+b-a+b}{\sqrt{a+b}+\sqrt{a-b}}}=\dfrac{\sqrt{a+b}+\sqrt{a-b}}{b}\)
Và \(\dfrac{c}{\sqrt{a+c}-\sqrt{a-c}}=\dfrac{c}{\dfrac{\left(a+c\right)-\left(a-c\right)}{\sqrt{a+c}+\sqrt{a-c}}}\)
\(=\dfrac{c}{\dfrac{a+c-a+c}{\sqrt{a+c}+\sqrt{a-c}}}=\dfrac{\sqrt{a+c}+\sqrt{a-c}}{c}\)
Từ \(a>b>c>0\) thì \(\left\{{}\begin{matrix}a+b>a+c\\a-b>a-c\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\sqrt{a+b}>\sqrt{a+c}\\\sqrt{a-b}>\sqrt{a-c}\end{matrix}\right.\)
\(\Rightarrow\sqrt{a+b}+\sqrt{a-b}>\sqrt{a+c}+\sqrt{a-c}\)
\(\Rightarrow\dfrac{\sqrt{a+b}+\sqrt{a-b}}{b}< \dfrac{\sqrt{a+c}+\sqrt{a-c}}{c}\left(b>c>0\right)\)
Hay ta có ĐPCM
\(\dfrac{b}{\sqrt{a+b}-\sqrt{a-b}}=\dfrac{b}{\dfrac{a+b-a-b}{\sqrt{a+b}+\sqrt{a-b}}}=\dfrac{b}{\dfrac{0}{\sqrt{a+b}+\sqrt{a-b}}}\rightarrow\varnothing\)
Đặt \(\sqrt{c.\left(a-c\right)}+\sqrt{c.\left(b-c\right)}\) = A
Ta có A^2 = \(\left(\sqrt{\left(a-c\right).c}+\sqrt{c.\left(b-c\right)}\right)^2\)
Áp dụng bđt bunhiacopxki ta có A^2 <= \(\left(\sqrt{a-c}^2+\sqrt{c^2}\right).\left(\sqrt{c^2}+\sqrt{b-c^2}\right)\)
= (a-c+c).(c+b-c) = ab
<=> A<= \(\sqrt{ab}\)=> ĐPCM
Dấu"=" <=> a-c = c và c = b-c
<=> a=b=2c>0
Ta có bất đẳng thức bunhicopxki
\(\sqrt{ax}+\sqrt{by}\le\sqrt{\left(a+x\right)\left(b+y\right)}\)
Áp dụng vào ta có:
\(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{\left(a-c+c\right)\left(b-c+c\right)}\le\sqrt{ab}\)
Dấu bằng xảy ra khi a-c = b-c
Ta có \(a>0,b>0,\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0,a+c\ge0,b+c\ge0\)
Do đó \(\frac{1}{c}=-\left(\frac{1}{a}+\frac{1}{b}\right)< 0\Rightarrow c< 0\)
Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow bc+ac+ab=0\)
\(\Rightarrow c^2=c^2+bc+ac+ab\)
\(\Rightarrow c^2=c\left(c+b\right)+a\left(c+b\right)=\left(a+c\right)\left(b+c\right)\)
\(\Rightarrow-c=\sqrt{\left(a+c\right)\left(b+c\right)}\Rightarrow2\sqrt{\left(a+c\right)\left(b+c\right)}+2c=0\)
\(\Rightarrow a+b=a+c+2\sqrt{\left(a+c\right)\left(b+c\right)}+b+c\)
\(\Rightarrow a+b=\left(\sqrt{a+c}+\sqrt{b+c}\right)^2\)
\(\Rightarrow\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)(đpcm)
Hoặc cách 2 bạn có thể đi ngược lại giả thuyết.Chúc bạn học tốt.
Nhìn đề thấy mệt nên sửa lại đỡ mệt.
Cho \(\hept{\begin{cases}a,b,c\ge0\\b^2=\frac{a^2+c^2}{2}\end{cases}}\)
Chứng minh rằng: \(\frac{1}{a+b}+\frac{1}{b+c}=\frac{2}{c+a}\)
Giải:
Theo đề ta có:
\(b^2=\frac{a^2+c^2}{2}\)
\(\Leftrightarrow b^2-a^2=c^2-b^2\)
\(\Leftrightarrow\left(b+a\right)\left(b-a\right)=\left(c+b\right)\left(c-b\right)\)
\(\Leftrightarrow\frac{b-a}{b+c}=\frac{c-b}{a+b}\)
Ta cần chứng minh:
\(\frac{1}{a+b}+\frac{1}{b+c}=\frac{2}{c+a}\)
\(\Leftrightarrow\left(\frac{1}{a+b}-\frac{1}{c+a}\right)+\left(\frac{1}{b+c}-\frac{1}{c+a}\right)=0\)
\(\Leftrightarrow\frac{c-b}{\left(a+b\right)\left(c+a\right)}+\frac{a-b}{\left(b+c\right)\left(c+a\right)}=0\)
\(\Leftrightarrow\frac{b-a}{\left(b+c\right)\left(c+a\right)}+\frac{a-b}{\left(b+c\right)\left(c+a\right)}=0\)
\(\Leftrightarrow\frac{b-a+a-b}{\left(b+c\right)\left(c+a\right)}=0\)
\(\Leftrightarrow0=0\)
Vậy....
Xem câu hỏi đây nhé >4>0 :)