\(\dfrac{a^2+bc}{b+ac}+\dfrac{b^2+ac}{c+ab}+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2018

Chuẩn hóa: a+b+c=3k

\(\Rightarrow\)\(\dfrac{a}{k}+\dfrac{b}{k}+\dfrac{c}{k}=3\)

Đặt (\(\dfrac{a}{k};\dfrac{b}{k};\dfrac{c}{k}\))\(\Rightarrow\left(x;y;z\right)\);x+y+z=3

ĐPCM\(\Leftrightarrow\)\(\sum\dfrac{19y^3-x^3}{xy+5y^2}\le3\left(x+y+z\right)\)

Ta CM BĐT:

\(\dfrac{19y^3-x^3}{xy+5y^2}\le4y-x\Leftrightarrow-\dfrac{\left(y-x\right)^2\left(x+y\right)}{xy+5y^2}\le0\)(đúng)

CMTT\(\Rightarrow\)ĐPCM

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Lời giải:

Đặt \(\frac{ab}{c}=x; \frac{bc}{a}=y; \frac{ca}{b}=z\Rightarrow a^2=xz; b^2=xy; c^2=yz\)

Bài toán trở thành: Cho $x,y,z>0$ thỏa mãn \(xy+yz+xz=3\)

Chứng minh \(x+y+z\geq 3\)

-------------------------------------------

Theo hệ quả quen thuộc của BĐT AM-GM:

\(x^2+y^2+z^2\geq xy+yz+xz\)

\(\Rightarrow x^2+y^2+z^2+2(xy+yz+xz)\geq 3(xy+yz+xz)\)

\(\Leftrightarrow (x+y+z)^2\geq 3(xy+yz+xz)=9\)

\(\Rightarrow x+y+z\geq 3\)

Ta có đpcm

Dấu "=" xảy ra khi $x=y=z=1$ hay $a=b=c=1$

14 tháng 7 2017

a/ \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ac+a^2}\)

\(=\dfrac{a^4}{a^3+a^2b+ab^2}+\dfrac{b^4}{b^3+b^2c+bc^2}+\dfrac{c^4}{c^3+ac^2+ca^2}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ca+a^2\right)}\)

\(=\dfrac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\dfrac{a^2+b^2+c^2}{a+b+c}\)

14 tháng 7 2017

b/ \(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}=\dfrac{a^4}{abc}+\dfrac{b^4}{abc}+\dfrac{c^4}{abc}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3abc}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}\)

\(\ge\dfrac{3\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)\left(a+b+c\right)}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{a+b+c}\)

24 tháng 12 2017

tu gia thiet co dc ab+bc+ca=0.Dat ab=x,bc=y,ca=z. Can chung minh x^3+y^3+z^3=3xyz

27 tháng 10 2019

Em nhớ mình đã làm bài này rồi mà sao nó ko hiển thì nhỉ:) Lười gõ lại nên copy bên AoPS luôn!

vhRKBad.png

Equality holds when a = b = c

Link gốc: Inequality 99 (câu trả lời của SBM)

27 tháng 10 2019

SMB = tth đấy:)) Ko phải ai khác đâu:)

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\) đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\) ta có...
Đọc tiếp

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\)

ta có VT=\(\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{y^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{z^1}}}=\sqrt{\dfrac{1}{1+\dfrac{ac}{b}}}+\sqrt{\dfrac{1}{1+\dfrac{ab}{c}}}+\sqrt{\dfrac{1}{1+\dfrac{bc}{a}}}\)

=\(\dfrac{1}{\sqrt{\dfrac{b+ac}{b}}}+\dfrac{1}{\sqrt{\dfrac{a+bc}{a}}}+\dfrac{1}{\sqrt{\dfrac{c+ab}{c}}}=\sqrt{\dfrac{a}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{b}{\left(b+c\right)\left(b+a\right)}}+\sqrt{\dfrac{c}{\left(c+a\right)\left(c+b\right)}}\)

\(\le\sqrt{3}\sqrt{\dfrac{ac+ab+bc+ba+ca+cb}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\sqrt{3}.\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

ta cần chứng minh \(\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\dfrac{3}{2}\Leftrightarrow\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9}{4}\Leftrightarrow8\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

<=>\(8\left(a+b+c\right)\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\) (luôn đúng )

^_^

0