Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)
\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:
\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)
Thiết lập các BĐT tương tự:
\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)
Dấu "=" không xảy ra nên ta có ĐPCM
Lưu ý: lần sau đăng từng bài 1 thôi nhé !
1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:
\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)
TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)
\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)
Cộng vế với vế ta được:
\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)
Lời giải:
Ta có:
\(2P=\frac{2}{a^2+2}+\frac{2}{b^2+2}+\frac{2}{c^2+2}=1-\frac{a^2}{a^2+2}+1-\frac{b^2}{b^2+2}+1-\frac{c^2}{c^2+2}\)
\(2P=3-\left(\frac{a^2}{a^2+2}+\frac{b^2}{b^2+2}+\frac{c^2}{c^2+2}\right)\)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{a^2}{a^2+2}+\frac{b^2}{b^2+2}+\frac{c^2}{c^2+2}\geq \frac{(a+b+c)^2}{a^2+b^2+c^2+6}=\frac{(a+b+c)^2}{a^2+b^2+c^2+2(ab+bc+ac)}=\frac{(a+b+c)^2}{(a+b+c)^2}=1\)
Do đó: \(2P\leq 3-1=2\Rightarrow P\leq 1\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
Đặt \(\left\{{}\begin{matrix}x=a+b+c\\y=ab+bc+ca\end{matrix}\right.\) khi đó \(BDT\Leftrightarrow\dfrac{x^2+4x+y+3}{x^2+2x+y+xy}\le\dfrac{12+4x+y}{9+4x+2y}\)
\(\Leftrightarrow\dfrac{x^2+4x+y+3}{x^2+2x+y+xy}-1\le\dfrac{12+4x+y}{9+4x+2y}-1\)
\(\Leftrightarrow\dfrac{2x+3-xy}{x^2+2x+y+xy}\le\dfrac{3-y}{9+4x+2y}\)
\(\Leftrightarrow\dfrac{5x^2-3x^2y-xy^2-6xy+24x+y^2+3y+27}{\left(4x+2y+9\right)\left(x^2+xy+2x+y\right)}\le0\)
Đúng vì \(\dfrac{5}{3}x^2y\ge5x^2;\dfrac{x^2y}{3}\ge y^2;xy^2\ge9x;5xy\ge15x;xy\ge3y;x^2y\ge27\)
Bài 2:
Áp dụng BĐT: \(x^2+y^2+z^2\ge xy+yz+xz\), ta có:
\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+a^2c^2\) (1)
Lại áp dụng tương tự ta có:
\(\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2\ge ab^2c+abc^2+a^2bc\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2\ge abc\left(a+b+c\right)\) (2)
Từ (1) và (2) suy ra:
\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Bài 1:
Áp dụng BĐT Cô -si, ta có:
\(\dfrac{a^2}{b^3}+\dfrac{1}{a}+\dfrac{1}{a}\ge\sqrt[3]{\dfrac{a^2}{b^3}.\dfrac{1}{a}.\dfrac{1}{a}}=\dfrac{3}{b}\)
\(\dfrac{b^2}{c^3}+\dfrac{1}{b}+\dfrac{1}{b}\ge\sqrt[3]{\dfrac{b^2}{c^3}.\dfrac{1}{b}.\dfrac{1}{b}}=\dfrac{3}{c}\)
\(\dfrac{c^2}{a^3}+\dfrac{1}{c}+\dfrac{1}{c}\ge\sqrt[3]{\dfrac{c^2}{a^3}.\dfrac{1}{c}.\dfrac{1}{c}}=\dfrac{3}{a}\)
Cộng vế theo vế ta được:
\(\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{a^2}{a^3}+\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\ge3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{c^2}{a^3}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
p/s: không chắc lắm, có gì sai xót xin giúp đỡ
Ta đi chứng minh BĐT : \(a^2+b^2+c^2\ge2\left(bc+ac-ab\right)\)
\(\Leftrightarrow\) \(a^2+b^2+c^2+2ab-2bc-2ac\ge0\)
\(\Leftrightarrow\) \(\left(a+b-c\right)^2\ge0\) luôn đúng.
\(\Rightarrow2\left(bc+ac-ab\right)\le\dfrac{5}{3}\)
\(\Leftrightarrow bc+ac-ab\le\dfrac{5}{6}< 1\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}< \dfrac{1}{abc}\)
Bài 3:
Áp dụng bất đẳng thức AM - GM có:
\(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge2\sqrt{x.\dfrac{1}{x}}+2\sqrt{y.\dfrac{1}{y}}+2\sqrt{z.\dfrac{1}{z}}\)
\(=2+2+2=6\)
Dấu " = " khi x = y = z = 1
Vậy...
3. Với x,y,z>0 áp dụng BĐT Cauchy ta có
\(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)
\(=\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)+\left(z+\dfrac{1}{z}\right)\)
\(\ge2\sqrt{x.\dfrac{1}{x}}+2\sqrt{y.\dfrac{1}{y}}+2\sqrt{z.\dfrac{1}{z}}=2+2+2=6\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{x}\\y=\dfrac{1}{y}\\z=\dfrac{1}{z}\end{matrix}\right.\Leftrightarrow x=y=z=1\)
1. Với a=b=c=0, ta thấy BĐT trên đúng
Với a,b,c>0 áp dụng BĐT Cauchy cho 3 số dương
\(a^3+a^3+b^3\ge3\sqrt[3]{a^3.a^3.b^3}=3\sqrt[3]{a^6b^3}=3a^2b\) (1)
\(b^3+b^3+c^3\ge3\sqrt[3]{b^3.b^3.c^3}=3\sqrt[3]{b^6c^3}=3b^2c\) (2)
\(c^3+c^3+a^3\ge3\sqrt[3]{c^3.c^3.a^3}=3\sqrt[3]{c^6a^3}=3c^2a\) (3)
Cộng (1), (2), (3) vế theo vế:
\(a^3+b^3+c^3\ge a^2b+b^2c+c^2a>\dfrac{a^2b+b^2c+c^2a}{3}\) (vì a,b,c>0)
Do đó BĐT trên đúng \(\forall a,b,c\ge0\)
\(BDT\Leftrightarrow\dfrac{\dfrac{1}{a}+\dfrac{1}{a^2}}{1+\dfrac{1}{a}+\dfrac{1}{a^2}}+\dfrac{\dfrac{1}{b}+\dfrac{1}{b^2}}{1+\dfrac{1}{b}+\dfrac{1}{b^2}}+\dfrac{\dfrac{1}{c}+\dfrac{1}{c^2}}{1+\dfrac{1}{c}+\dfrac{1}{c^2}}\le2\)
Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\rightarrow\left(n,h,t\right)\) thì ta có :
\(\Leftrightarrow\dfrac{n+n^2}{1+n+n^2}+\dfrac{h+h^2}{1+h+h^2}+\dfrac{t+t^2}{1+t+t^2}\le2\)
\(\Leftrightarrow\dfrac{1}{1+n+n^2}+\dfrac{1}{1+h+h^2}+\dfrac{1}{1+t+t^2}\ge1\)
Đặt \(n=\dfrac{yz}{x^2};h=\dfrac{xz}{y^2};t=\dfrac{xy}{z^2}\)\(\Rightarrow\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\)
Và \(\dfrac{x^4}{x^4+x^2yz+y^2z^2}+\dfrac{y^4}{y^4+xy^2z+x^2z^2}+\dfrac{z^4}{z^4+xyz^2+x^2y^2}\ge1\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+x^2yz+xy^2z+xyz^2+x^2y^2+y^2z^2+z^2x^2}\)
Cần cm \(\dfrac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+x^2yz+xy^2z+xyz^2+x^2y^2+y^2z^2+z^2x^2}\ge1\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2\ge x^4+y^4+z^4+x^2yz+xy^2z+xyz^2+x^2y^2+y^2z^2+z^2x^2\)
\(\Leftrightarrow x^4+y^4+z^4+2\left(x^2y^2+y^2z^2+z^2x^2\right)\ge x^4+y^4+z^4+x^2yz+xy^2z+xyz^2+x^2y^2+y^2z^2+z^2x^2\)
\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2\ge x^2yz+xy^2z+xyz^2\left(1\right)\)
Áp dụng BĐT AM-GM ta có:
\(x^2y^2+y^2z^2=y^2\left(x^2+z^2\right)\ge2xy^2z\)
Tương tự rồi cộng theo vế ta có \(\left(1\right)\) đúng
Khi \(a=b=c=1\)
Sửa đề\(VP\le 2\) sau đó nó chính là 1 dạng của BĐT Vasc k cần thêm j cả :">