Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 : áp dụng BĐT SVAC ta có \(A\ge\frac{(a+b+c)^2}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}}=\frac{1.\sqrt{2a+2b+2c}}{\sqrt{2.}(\sqrt{b+c}+\sqrt{a+b}+\sqrt{a+c})}\)
mặt khác lại có \(\frac{\sqrt{2a+2b+2c}}{\sqrt{2}.(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})}\ge\frac{\sqrt{(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})^2}}{\sqrt{2}.\sqrt{3}.(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})}=\frac{1}{\sqrt{6}}\)theo bđt svac
\(\Rightarrow A\ge\frac{1}{\sqrt{6}}\)dấu bằng xảy ra tại a=b=c=\(\frac{1}{3}\)
Ta có:
\(\sqrt[3]{a+b}=\sqrt[3]{\frac{9}{4}}.\sqrt[3]{\left(a+b\right).\frac{2}{3}.\frac{2}{3}}\le\frac{\left(a+b\right)+\frac{2}{3}+\frac{2}{3}}{3}\)
Tương tự:
\(\sqrt[3]{b+c}\le\frac{\left(b+c\right)+\frac{2}{3}+\frac{2}{3}}{3}\)
\(\sqrt[3]{c+a}\le\frac{\left(c+a\right)+\frac{2}{3}+\frac{2}{3}}{3}\)
\(\Rightarrow\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{c+a}\le\sqrt[3]{\frac{9}{4}}.\frac{2\left(a+b+c\right)+4}{3}\)
\(=\sqrt[3]{\frac{9}{4}}.\frac{6}{3}=\sqrt[3]{18}\)
(Dấu "="\(\Leftrightarrow\hept{\begin{cases}a+b=\frac{2}{3}\\b+c=\frac{2}{3}\\c+a=\frac{2}{3}\end{cases}}\)\(\Leftrightarrow a=b=c=\frac{1}{3}\))
Em làm sai tại đây nhé:
\(\sqrt[3]{a+b}=\sqrt[3]{\frac{9}{4}}.\sqrt[3]{\left(a+b\right).\frac{2}{3}.\frac{2}{3}}\le\sqrt[3]{\frac{9}{4}}.\frac{1}{3}.\left(a+b+\frac{2}{3}+\frac{2}{3}\right)\)
\(S=\sqrt{a+b+c}+\sqrt{b+c+d}+\sqrt{c+d+a}+\sqrt{d+a+b}\)
\(\le\frac{a+b+c}{\sqrt{3}}+\frac{\sqrt{3}}{4}+\frac{b+c+d}{\sqrt{3}}+\frac{\sqrt{3}}{4}+\frac{c+d+a}{\sqrt{3}}+\frac{\sqrt{3}}{4}+\frac{d+a+b}{\sqrt{3}}+\frac{\sqrt{3}}{4}\)
\(=\sqrt{3}+\frac{3}{\sqrt{3}}\left(a+b+c+d\right)=2\sqrt{3}\)
\(A=\frac{a\sqrt{a}}{\sqrt{a+b+2c}}+\frac{b\sqrt{b}}{\sqrt{b+c+2a}}+\frac{c\sqrt{c}}{\sqrt{c+a+2b}}\)
\(A=\frac{a^2}{\sqrt{a\left(a+b+2c\right)}}+\frac{b^2}{\sqrt{b\left(b+c+2a\right)}}+\frac{c^2}{\sqrt{c\left(c+a+2b\right)}}\)
\(\ge\frac{\left(a+b+c\right)^2}{\sqrt{a\left(a+b+2c\right)}+\sqrt{b\left(b+c+2a\right)}+\sqrt{c\left(c+a+2b\right)}}\)
Xét: \(2\left(\sqrt{a\left(a+b+2c\right)}+\sqrt{b\left(b+c+2a\right)}+\sqrt{c\left(c+a+2b\right)}\right)\)
\(=\sqrt{4a\left(a+b+2c\right)}+\sqrt{4b\left(b+c+2a\right)}+\sqrt{4c\left(c+a+2b\right)}\)
\(\le\frac{4a+a+b+2c+4b+b+c+2a+4c+c+a+2b}{2}=4\left(a+b+c\right)\)
\(\Rightarrow\sqrt{a\left(a+b+2c\right)}+\sqrt{b\left(b+c+2a\right)}+\sqrt{c\left(c+a+2b\right)}\le2\left(a+b+c\right)\)
\(\Rightarrow\frac{\left(a+b+c\right)^2}{\sqrt{a\left(a+b+2c\right)}+\sqrt{b\left(b+c+2a\right)}+\sqrt{c\left(c+a+2b\right)}}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{3}{2}\)
\("="\Leftrightarrow a=b=c=1\)
Áp dụng bđt Bunhiacopxki :
\(A^2=\left(1.\sqrt{2a+b+1}+1.\sqrt{2b+c+1}+1.\sqrt{2c+a+1}\right)^2\)
\(\le\left(1^2+1^2+1^2\right)\left(2a+b+1+2b+c+1+2c+a+1\right)\)
\(\Rightarrow A^2\le3.3\left(a+b+c+1\right)\)
\(\Rightarrow A^2\le36\Rightarrow A\le6\) (Vì A > 0)
Dấu "=" xảy ra \(\Leftrightarrow\begin{cases}\sqrt{2a+b+1}=\sqrt{2b+c+1}=\sqrt{2c+a+1}\\a+b+c=3\end{cases}\)
\(\Leftrightarrow a=b=c=1\)
Vậy A đạt giá trị lớn nhất bằng 6 tại a = b = c = 1
- Max
Áp dụng bất đẳng thức Cauchy Shwarz, ta có:
\(A=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
\(\Rightarrow A^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)
\(\le\left(1+1+1\right)\left(a+b+b+c+c+a\right)=6\)
\(\Rightarrow A\le\sqrt{6}\left(A>0\right)\)
Mới tối hôm qua làm bên AoPS-_- Sửa đề: a, b, c \(\ge\)0.
Bài làm:(bên đó tên níc của em là SBM):inequality!
Đăng ảnh lên cho dễ xem nha!(ko chắc lắm đâu, đây là phần min)