Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)
Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)
Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)
Bài 2: Thêm đk a,b,c >0.
Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.
Bài 3: Nó sao sao ấy ta?
Áp dụng bất đẳng thức bunyakovsky: \(\left(b+c\right)^2\le2\left(b^2+c^2\right)\Leftrightarrow b+c\le\sqrt{2\left(b^2+c^2\right)}\)
tương tự với các cặp còn lại , ta thu được \(VT\ge\frac{a^2}{\sqrt{2\left(b^2+c^2\right)}}+\frac{b^2}{\sqrt{2\left(a^2+c^2\right)}}+\frac{c^2}{\sqrt{2\left(a^2+b^2\right)}}\)
Đặt \(\hept{\begin{cases}\sqrt{b^2+c^2}=x\\\sqrt{a^2+c^2}=y\\\sqrt{a^2+b^2}=z\end{cases}}\)(\(x,y,z\ge0\)và \(x+y+z=\sqrt{2011}\))\(\Leftrightarrow\hept{\begin{cases}a^2=\frac{y^2+z^2-x^2}{2}\\b^2=\frac{x^2+z^2-y^2}{2}\\c^2=\frac{x^2+y^2-z^2}{2}\end{cases}}\)
\(VT\ge\frac{y^2+z^2-x^2}{2\sqrt{2}x}+\frac{x^2+z^2-y^2}{2\sqrt{2}y}+\frac{x^2+y^2-z^2}{2\sqrt{2}z}\)
\(=\frac{1}{2\sqrt{2}}\left(\frac{y^2+z^2-x^2}{x}+\frac{z^2+x^2-y^2}{y}+\frac{x^2+y^2-z^2}{z}\right)=\frac{1}{2\sqrt{2}}\left(\frac{y^2}{x}+\frac{z^2}{x}+\frac{z^2}{y}+\frac{x^2}{y}+\frac{x^2}{z}+\frac{y^2}{z}-x-y-z\right)\)
ÁP dụng bất đẳng thức cauchy-schwarz:
\(\frac{y^2}{x}+\frac{z^2}{x}+\frac{x^2}{y}+\frac{z^2}{y}+\frac{y^2}{z}+\frac{x^2}{x}\ge\frac{\left(2x+2y+2z\right)^2}{2x+2y+2z}=2x+2y+2z\)
do đó \(VT\ge\frac{1}{2\sqrt{2}}\left(x+y+z\right)=\frac{1}{2}\sqrt{\frac{2011}{2}}\)( vì \(x+y+z=\sqrt{2011}\))
đẳng thức xảy ra khi \(x=y=z=\frac{\sqrt{2011}}{3}\)hay \(a=b=c=\frac{1}{3}\sqrt{\frac{2011}{2}}\)
Bài 1:
Đặt \(a^2=x;b^2=y;c^2=z\)
Ta có:\(\sqrt{\frac{x}{x+y}}+\sqrt{\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}}\le\frac{3}{\sqrt{2}}\)
Áp dụng BĐT cô si ta có:
\(\sqrt{\frac{x}{x+y}}=\frac{1}{\sqrt{2}}\sqrt{\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}\frac{3\left(x+z\right)}{2\left(x+y+z\right)}}\)
\(\le\frac{1}{2\sqrt{2}}\left[\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}+\frac{3\left(x+z\right)}{2\left(x+y+z\right)}\right]\)
Tương tự với \(\sqrt{\frac{y}{y+z}}\)và \(\sqrt{\frac{z}{z+x}}\)
Cộng lại ta được:
\(\frac{\sqrt{2}}{3}\left[\frac{x\left(x+y+z\right)}{\left(x+y\right)\left(x+z\right)}+\frac{y\left(x+y+z\right)}{\left(y+z\right)\left(y+x\right)}+\frac{z\left(x+y+z\right)}{\left(z+x\right)\left(z+y\right)}\right]+\frac{3}{2\sqrt{2}}\le\frac{3}{2\sqrt{2}}\)
Sau đó bình phương hai vế rồi
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)đẳng thức đúng
Vậy...
Bài 2:
Trước hết ta chứng minh bất đẳng thức sau:
\(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\le\frac{1}{3}\)
Nhân cả hai vế bđt với 4(a+b+c)4(a+b+c) rồi thu gọn ta được bđt sau:
\(\frac{4a\left(a+b+c\right)}{4a+4b+c}+\frac{4b\left(a+b+c\right)}{4b+4c+a}+\frac{4c\left(a+b+c\right)}{4c+4a+b}\)\(\le\frac{4}{3}\left(a+b+c\right)\)
\(\left[\frac{4a\left(a+b+c\right)}{4a+4b+}-a\right]+\left[\frac{4b\left(a+b+c\right)}{4b+4c+a}-b\right]+\left[\frac{4c\left(a+b+c\right)}{4c+4a+b}-c\right]\le\frac{a+b+c}{3}\)
\(\frac{ca}{4a+4b+c}+\frac{ab}{4b+4c+a}+\frac{bc}{4c+4a+b}\le\frac{a+b+c}{9}\)
Áp dụng bđt cauchy-Schwarz ta có \(\frac{ca}{4a+4b+c}=\frac{ca}{\left(2b+c\right)+2\left(2a+b\right)}\)\(\le\frac{ca}{9}\left(\frac{1}{2b+c}+\frac{2}{2a+b}\right)\)
Từ đó ta có:
\(\text{∑}\frac{ca}{4a+4b+c}\le\frac{1}{9}\text{∑}\left(\frac{ca}{2b+c}+\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ab}{2b+c}\right)=\frac{a+b+c}{9}\)
Đặt VT=A rồi áp dụng bđt cauchy-Schwarz cho VT ta có
\(T^2\le3\left(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\right)\)\(\le3\cdot\frac{1}{3}=1\Leftrightarrow T\le1\)
Dấu = xảy ra khi a=b=c
c bạn tự làm nhé mình mệt rồi :D
Cái này không khó :v
Áp dụng BĐT Cauchy-Schwarz dạng Engel, ta có:
\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{a+c}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)
Face khác ;v, theo AM-GM, ta có
\(\dfrac{a+b+c}{2}\ge\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\dfrac{6}{2}=3\)
Vậy ta có đpcm. Đẳng thức xảy ra khi a=b=c=2
\(VT=\frac{1}{2}\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{2}\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\ge\frac{1}{2}\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{2}\left(a+b+c\right)\)
\(VT\ge\frac{1}{2}\left(\frac{a^2}{b}-a+b+b\right)+\frac{1}{2}\left(\frac{b^2}{c}-b+c+c\right)+\frac{1}{2}\left(\frac{c^2}{a}-c+a+a\right)\)
\(VT\ge\sqrt{\left(\frac{a^2}{b}-a+b\right).b}+\sqrt{\left(\frac{b^2}{c}-b+c\right).c}+\sqrt{\left(\frac{c^2}{a}-c+a\right).a}\)
\(VT\ge\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
2/
a/ \(\sqrt{a}+\frac{1}{\sqrt{a}}\ge2\sqrt{\sqrt{a}.\frac{1}{\sqrt{a}}}=2\), dấu "=" khi \(a=1\)
b/ \(a+b+\frac{1}{2}=a+\frac{1}{4}+b+\frac{1}{4}\ge2\sqrt{a.\frac{1}{4}}+2\sqrt{b.\frac{1}{4}}=\sqrt{a}+\sqrt{b}\)
Dấu "=" khi \(a=b=\frac{1}{4}\)
c/ Có lẽ bạn viết đề nhầm, nếu đề đúng thế này thì mình ko biết làm
Còn đề như vậy: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\) thì làm như sau:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\) ; \(\frac{1}{y}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\); \(\frac{1}{x}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\)
Cộng vế với vế ta được:
\(\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\ge\frac{2}{\sqrt{xy}}+\frac{2}{\sqrt{yz}}+\frac{2}{\sqrt{xz}}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\)
Dấu "=" khi \(x=y=z\)
d/ \(\frac{\sqrt{3}+2}{\sqrt{3}-2}-\frac{\sqrt{3}-2}{\sqrt{3}+2}=\frac{\left(\sqrt{3}+2\right)\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}-\frac{\left(\sqrt{3}-2\right)\left(\sqrt{3}-2\right)}{\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)}\)
\(=\frac{7+4\sqrt{3}}{3-4}-\frac{7-4\sqrt{3}}{3-4}=-7-4\sqrt{3}+7-4\sqrt{3}=-8\sqrt{3}\)
e/ \(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}=\frac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{ab}}.\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}=\frac{\left(a-b\right)\left(a+b-\sqrt{ab}\right)}{\sqrt{ab}}\)
\(=\frac{a^2-b^2}{\sqrt{ab}}-\left(a-b\right)\) (bạn chép đề sai)
Ta có :
\(\frac{a^2}{a+b}=\frac{a^2+ab-ab}{a+b}=a-\frac{ab}{a+b}\le a-\frac{ab}{2\sqrt{ab}}=a-\frac{\sqrt{ab}}{2}\)(1)
Tương tự \(\hept{\begin{cases}\frac{b^2}{b+c}\le b-\frac{\sqrt{bc}}{2}\\\frac{c^2}{a+c}\le c-\frac{\sqrt{ac}}{2}\end{cases}}\)(2)
Nhhan (1);(2) lại ta được
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{a+c}\ge a+b+c-\frac{\sqrt{ab}+\sqrt{ac}+\sqrt{bc}}{2}=a+b+c-3\)
Ta lại có : \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{bc}=6\) (tự cm)
\(\Rightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{a+c}\ge6-3=3\)(đpcm)
Tuogw tựCâu hỏi của Nue nguyen - Toán lớp 10 | Học trực tuyến