Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(H=\frac{\sqrt{a}-\sqrt{b}}{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+c}+\frac{\sqrt{b}-\sqrt{c}}{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+a}+\frac{\sqrt{c}-\sqrt{a}}{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+b}\)
\(=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{c}+\sqrt{a}\right)\left(\sqrt{c}+\sqrt{b}\right)}+\frac{\sqrt{b}-\sqrt{c}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\frac{\sqrt{c}-\sqrt{a}}{\left(\sqrt{b}+\sqrt{a}\right)\left(\sqrt{b}+\sqrt{c}\right)}\)
\(=\frac{a-b+b-c+c-a}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)}\)\(=0\)
Vậy \(H=0\)
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
Theo giả thiết thì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Rightarrow ab+bc+ca=abc\)
Ta cần chứng minh: \(\Sigma\sqrt{a+bc}\ge\sqrt{abc}+\Sigma\sqrt{a}\)(*)
Thật vậy: (*) \(\Leftrightarrow\Sigma\sqrt{\frac{a^2+abc}{a}}\ge\sqrt{abc}+\Sigma\sqrt{a}\)
\(\Leftrightarrow\Sigma\sqrt{\frac{a^2+ab+bc+ca}{a}}\ge\sqrt{abc}+\Sigma\sqrt{a}\)\(\Leftrightarrow\Sigma\sqrt{\frac{\left(a+b\right)\left(a+c\right)}{a}}\ge\sqrt{abc}+\Sigma\sqrt{a}\)
\(\Leftrightarrow\text{}\Sigma\sqrt{bc\left(a+b\right)\left(a+c\right)}\ge abc+\sqrt{abc}\left(\Sigma\sqrt{a}\right)\)(Nhân cả hai vế của bất đẳng thức với \(\sqrt{abc}>0\))
\(\Leftrightarrow\Sigma\sqrt{\left(b^2+ab\right)\left(c^2+ac\right)}\ge abc+\Sigma a\sqrt{bc}\)
Bất đẳng thức cuối luôn đúng vì theo BĐT Cauchy-Schwarz, ta có: \(\Sigma\sqrt{\left(b^2+ab\right)\left(c^2+ac\right)}\ge\Sigma\left(bc+a\sqrt{bc}\right)=abc+\Sigma a\sqrt{bc}\text{}\)
Đẳng thức xảy ra khi a = b = c = 3
Mình cũng đang tìm câu hỏi như vậy. Ai biết làm giúp với
Câu hỏi của hoàng thị huyền trang - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo nhé!
Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\) \(\left(x,y,z>0\right)\)
Theo đề \(ab+bc+ca=3abc\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=\frac{3}{xyz}\)
\(\Rightarrow x+y+z=3\)
Và \(\sqrt{\frac{ab}{a+b+1}}+\sqrt{\frac{bc}{b+c+1}}+\sqrt{\frac{ca}{c+a+1}}\)
\(=\sqrt{\frac{\frac{1}{xy}}{\frac{1}{x}+\frac{1}{y}+1}}+\sqrt{\frac{\frac{1}{yz}}{\frac{1}{y}+\frac{1}{z}+1}}+\sqrt{\frac{\frac{1}{zx}}{\frac{1}{z}+\frac{1}{x}+1}}\)
\(=\frac{1}{\sqrt{x+y+xy}}+\frac{1}{\sqrt{y+z+yz}}+\frac{1}{\sqrt{z+x+zx}}\)
\(\ge\frac{9}{\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}}\) (Cauchy Schwarz)
Ta có: \(\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}\)
\(=\sqrt{\left(\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}\right)^2}\)
\(\le\sqrt{3\left(x+y+xy+y+z+yz+z+x+zx\right)}\)
\(=\sqrt{\left[2\left(x+y+z\right)+\left(xy+yz+zx\right)\right]}\)
\(\le\sqrt{6+\frac{\left(x+y+z\right)^2}{3}}=\sqrt{6+\frac{3^2}{3}}=3\)
\(\Rightarrow\sqrt{\frac{ab}{a+b+1}}+\sqrt{\frac{bc}{b+c+1}}+\sqrt{\frac{ca}{c+a+1}}\)
\(\ge\frac{9}{\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}}\ge\frac{9}{3}=3\)
Dấu "=" xảy ra khi: \(x=y=z=1\Rightarrow a=b=c=1\)
Ta có \(c+ab=\left(a+b+c\right)c+ab=ab+bc+c^2-ab=\left(a+c\right)\left(b+c\right)\)
Tương tự có \(a+bc=\left(b+a\right)\left(c+a\right)\)
\(b+ca=\left(b+c\right)\left(a+b\right)\)
Khi đó : \(P=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(b+a\right)\left(c+a\right)}}+\sqrt{\frac{ca}{\left(c+b\right)\left(a+b\right)}}\)
Áp dụng BĐT AM-GM ta có
\(\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)
\(\sqrt{\frac{bc}{\left(b+a\right)\left(c+a\right)}}\le\frac{1}{2}\left(\frac{b}{b+a}+\frac{c}{c+a}\right)\)
\(\sqrt{\frac{ca}{\left(c+b\right)\left(a+b\right)}}\le\frac{1}{2}\left(\frac{c}{c+b}+\frac{a}{a+b}\right)\)
Cộng theo vế các bất đẳng thức cùng chiều
\(P\le\frac{1}{2}\left(\frac{a+c}{a+c}+\frac{b+c}{b+c}+\frac{b+a}{b+a}\right)=\frac{3}{2}\)
Vậy \(Max_P=\frac{3}{2}\)khi \(a=b=c=\frac{1}{3}\)