K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2020

Áp dụng liên tiếp AM - GM và Cauchy - Schwarz ta có :

\(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}\ge\frac{a^2+ab+1}{\sqrt{a^2+ab+c^2+\left(a^2+b^2\right)}}\)

   \(=\frac{a^2+ab+1}{\sqrt{a^2+ab+1}}\)

\(=\sqrt{a^2+ab+1}=\sqrt{a^2+ab+a^2+b^2+c^2}\)

\(=\frac{1}{\sqrt{5}}\sqrt{\left(\frac{9}{4}+\frac{3}{4}+1+1\right)\left[\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}+a^2+c^2\right]}\)

\(\ge\frac{1}{\sqrt{5}}\left[\frac{3}{2}\left(a+\frac{b}{2}\right)+\frac{3}{4}b+a+c\right]\)

\(=\frac{1}{\sqrt{5}}\left(\frac{5}{2}a+\frac{3}{2}b+c\right)\)

Chứng minh tương tự và công lại ta có đpcm 

Dấu " = " xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

                       

30 tháng 11 2019

Ta có: \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}=\frac{a^2+ab+1}{\sqrt{a^2+ab+2ab+c^2}}\ge\frac{a^2+ab+1}{\sqrt{a^2+ab+a^2+b^2+c^2}}=\sqrt{a^2+ab+1}\)

\(\sqrt{a^2+ab+1}=\sqrt{a^2+ab+a^2+b^2+c^2}=\sqrt{\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2+a^2+c^2}\)

\(=\frac{1}{\sqrt{5}}.\sqrt{\left(\frac{9}{4}+\frac{3}{4}+1+1\right)\left(\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2+a^2+c^2\right)}\)

\(\ge\frac{1}{\sqrt{5}}\sqrt{\left(\frac{3}{2}\left(a+\frac{b}{2}\right)+\frac{3}{2}b+a+c\right)^2}\)

\(=\frac{1}{\sqrt{5}}\left(\frac{5}{2}a+\frac{3}{2}b+c\right)\)

=> \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}\ge\frac{1}{\sqrt{5}}\left(\frac{5}{2}a+\frac{3}{2}b+c\right)\)

Tương tự ta cũng chứng minh đc:

 \(\frac{b^2+bc+1}{\sqrt{b^2+3bc+a^2}}\ge\frac{1}{\sqrt{5}}\left(\frac{5}{2}b+\frac{3}{2}c+a\right)\)

\(\frac{c^2+ca+1}{\sqrt{c^2+3ca+b^2}}\ge\frac{1}{\sqrt{5}}\left(\frac{5}{2}c+\frac{3}{2}a+b\right)\)

=> \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}+\frac{b^2+bc+1}{\sqrt{b^2+3bc+a^2}}+\frac{c^2+ca+1}{\sqrt{c^3+3ca+b^2}}\ge\frac{1}{\sqrt{5}}\left(5a+5b+5c\right)\)

\(=\sqrt{5}\left(a+b+c\right)\)

Dấu "=" xảy ra <=> a = b = c =\(\frac{1}{\sqrt{3}}\)

19 tháng 5 2017

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

9 tháng 8 2020

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\) 

8 tháng 1 2020

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)

\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)

\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)

\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)

Từ ( 1 ) và ( 2 ) có đpcm

12 tháng 10 2017

Áp dụng bđt Holder, ta có:

\(\left(\sqrt{\frac{ab}{a^2+b^2}}+\sqrt{\frac{bc}{b^2+c^2}}+\sqrt{\frac{ca}{c^2+a^2}}\right).\left(\sqrt{\frac{ab}{a^2+b^2}}+\sqrt{\frac{bc}{b^2+c^2}}+\sqrt{\frac{ca}{c^2+a^2}}\right)\left[a^2b^2\left(a^2+b^2\right)+b^2c^2\left(b^2+c^2\right)+c^2a^2\left(c^2+a^2\right)\right]\ge\left(ab+bc+ca\right)^3=\frac{\left(a^2+b^2+c^2\right)^3}{8}\)

=>\(VT^2\ge\frac{1}{8}.\frac{\left(a^2+b^2+c^2\right)^3}{a^2b^4+a^4b^2+b^2c^4+b^4c^2+c^2a^4+c^4a^2}\)

Đặt a2=x, b2=y, c2=z

=>\(VT^2\ge\frac{1}{8}.\frac{\left(x+y+z\right)^3}{x^2y+xy^2+y^2z+y^2z+z^2x+zx^2}\)(1)

Theo bđt Schur, ta có:

\(x\left(x-y\right)\left(x-z\right)+y\left(y-z\right)\left(y-x\right)+z\left(z-x\right)\left(z-y\right)\ge0\)

<=>\(x^3+y^3+z^3+3xyz\ge x^2y+xy^2+y^2z+y^2z+z^2x+zx^2\)

<=>\(x^3+y^3+z^3+6xyz+3\left(x^2y+xy^2+y^2z+y^2z+z^2x+zx^2\right)\ge4.\left(x^2y+xy^2+y^2z+y^2z+z^2x+zx^2\right)+3xyz\)

Vì \(xyz=\left(abc\right)^2\ge0\)

=>\(\left(x+y+z\right)^3\ge4\left(x^2y+xy^2+y^2z+y^2z+z^2x+zx^2\right)\)

=>\(\frac{\left(x+y+z\right)^3}{x^2y+xy^2+y^2z+y^2z+z^2x+zx^2}\ge4\)

Thay vào (1)=>\(VT^2\ge\frac{1}{2}=>VT\ge\frac{1}{\sqrt{2}}\)

=>ĐPCM

13 tháng 10 2017

a,b,c>=0 mới được nhé

Đặt biểu thức là A

\(\sqrt{\frac{ab}{a^2+b^2}}=\frac{\sqrt{ab\left(a^2+b^2\right)}}{a^2+b^2}>=\frac{\sqrt{2abab}}{a^2}=\frac{\sqrt{2}ab}{a^2+b^2}\)

Dấu = xảy ra khi có một trong 2 số a,b =0 hoặc a=b.

Tương tự=> A>=\(\frac{\sqrt{2}ab}{a^2+b^2}+\frac{\sqrt{2}bc}{b^2+c^2}+\frac{\sqrt{2}ca}{a^2+c^2}\)

\(\sqrt{2}A>=\frac{2ab}{a^2+b^2}+\frac{2bc}{b^2+c^2}+\frac{2ca}{c^2+a^2}\)

\(\sqrt{2}A+3>=\frac{\left(a+b\right)^2}{a^2+b^2}+\frac{\left(b+c\right)^2}{b^2+c^2}+\frac{\left(c+a\right)^2}{c^2+a^2}.\)

>=\(\frac{\left(2a+2b+2c\right)^2}{2\left(a^2+b^2+c^2\right)}=\frac{4\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=4.\)

=>A>=1/căn 2

Dấu = xảy ra khi 2 số bằng nhau, một số =0

6 tháng 6 2017

xài mincopski thử, tui ăn cơm đã

7 tháng 6 2017

#: Lỡ hẹn với Mincopxki rồi xài cách khác vậy :(

Đặt \(a=\frac{2x}{3};b=\frac{2y}{3};c=\frac{2z}{3}\)

Khi đó ta có \(xy+yz+xz\ge3\) và cần chứng minh

\(Σ_{cyc}\sqrt{\frac{4x^2}{9}+\frac{9}{\left(2y+3\right)^2}}\ge\frac{\sqrt{181}}{5}\)

Áp dụng BĐT Cauchy-Schwarz ta có:\(Σ_{cyc}\sqrt{\frac{4x^2}{9}+\frac{9}{\left(2y+3\right)^2}}\)

\(=\frac{15}{\sqrt{181}}Σ_{cyc}\sqrt{\left(\frac{4}{9}+\frac{9}{25}\right)\left(\frac{4x^2}{9}+\frac{9}{\left(2y+3\right)^2}\right)}\ge\frac{15}{\sqrt{181}}Σ_{cyc}\left(\frac{4x}{9}+\frac{9}{5\left(2y+3\right)}\right)\)

Giờ chỉ cần chứng minh \(\frac{15}{\sqrt{181}}Σ_{cyc}\left(\frac{4x}{9}+\frac{9}{5\left(2y+3\right)}\right)\ge\frac{\sqrt{181}}{5}\)

\(\Leftrightarrow20\left(x+y+z\right)+81\left(\frac{1}{2x+3}+\frac{1}{2y+3}+\frac{1}{2z+3}\right)\ge\frac{543}{5}\)

Đặt tiếp \(x+y+z=3u;xy+yz+xz=3v^2\left(v>0\right)\)

Vì thế \(u\ge v\ge1\)và áp dụng BĐT C-S dạng Engel ta có:

\(20\left(x+y+z\right)+81\left(\frac{1}{2x+3}+\frac{1}{2y+3}+\frac{1}{2z+3}\right)-\frac{543}{5}\)

\(\ge20\left(x+y+z\right)+81\cdot\frac{\left(1+1+1\right)^2}{Σ_{cyc}\left(2x+3\right)}-\frac{543}{5}=60u+\frac{729}{6u+9}-\frac{543}{5}\)

\(=3\left(20u+\frac{81}{2u+3}-\frac{181}{5}\right)=\frac{6\left(u-1\right)\left(100u+69\right)}{5\left(2u+3\right)}\ge0\) 

Điều này đúng tức là ta có ĐPCM

17 tháng 6 2019

đề bài

cm 

1/a+2 + 1/b+2 +1/c+2 <=1

bn p viết đề chứ???

##thiêndi###