\(\dfrac{a^2+b^2+c^2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2018

a)Bunhia:

\(\left(1+2\right)\left(b^2+2a^2\right)\ge\left(1.b+\sqrt{2}.\sqrt{2}a\right)^2=\left(b+2a\right)^2\)

b)\(ab+bc+ca=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)

Áp dụng bđt câu a

=>VT\(\ge\)\(\dfrac{b+2a}{\sqrt{3}ab}+\dfrac{c+2b}{\sqrt{3}bc}+\dfrac{a+2c}{\sqrt{3}ca}\)

\(\Leftrightarrow VT\ge\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{b}+\dfrac{2}{c}+\dfrac{1}{c}+\dfrac{2}{a}=3=VP\)

Tự tìm dấu "="

9 tháng 12 2018

Nguyễn Việt LâmMashiro ShiinaBNguyễn Thanh HằngonkingCẩm MịcFa CTRẦN MINH HOÀNGhâu DehQuân Tạ MinhTrương Thị Hải Anh

7 tháng 7 2018

Từ giả thiết:\(ab+bc+ca=3\Rightarrow\left(ab+bc+ca\right)^2=9\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=9\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=9-2abc\left(a+b+c\right)\)

Ta có:\(\frac{a}{2a^2+bc}+\frac{b}{2b^2+ca}+\frac{c}{2c^2+ab}\)\(=\frac{1}{\frac{2a^2+bc}{a}}+\frac{1}{\frac{2b^2+ca}{b}}+\frac{1}{\frac{2c^2+ab}{c}}\)

\(\ge\frac{\left(1+1+1\right)^2}{2a+\frac{bc}{a}+2b+\frac{ca}{b}+2c+\frac{ab}{c}}=\frac{9}{2a+2b+2c+\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}}\)

\(=\frac{9}{2a+2b+2c+\frac{b^2c^2+c^2a^2+a^2b^2}{abc}}=\frac{9}{2a+2b+2c+\frac{9-2abc\left(a+b+c\right)}{abc}}\)

\(=\frac{9}{2a+2b+2c+\frac{9}{abc}-2\left(a+b+c\right)}=\frac{9}{\frac{9}{abc}}=abc\)

Dấu "=" xảy ra khi 

\(\frac{2a^2+bc}{a}=\frac{2b^2+ca}{b}=\frac{2c^2+ab}{c}=\frac{2a^2+bc-2b^2-ca}{a-b}=\frac{2\left(a-b\right)\left(a+b\right)-c\left(a-b\right)}{a-b}\)

\(=2\left(a+b\right)-c\).Tương tự ta có:\(2\left(a+b\right)-c=2\left(b+c\right)-a=2\left(c+a\right)-b\)

\(\Leftrightarrow a+b=b+c=c+a\)

\(\Leftrightarrow a=b=c\)

30 tháng 12 2017

Áp dụng bđt : x^2+y^2+z^2 >= (x+y+z)^2/3 ta có :

\(\frac{\sqrt{b^2+2a^2}}{ab}\)\(\frac{\sqrt{a^2+b^2+a^2}}{ab}\)>= \(\frac{\sqrt{\frac{\left(a+b+a\right)^2}{3}}}{ab}\) = \(\frac{2a+b}{\sqrt{3}ab}\) = \(\frac{2}{\sqrt{3}b}+\frac{1}{\sqrt{3}a}\)

Tương tự : \(\frac{\sqrt{c^2+2b^2}}{bc}\)>= \(\frac{2}{\sqrt{3}c}+\frac{1}{\sqrt{3}b}\) ;    \(\frac{\sqrt{a^2+2c^2}}{ac}\)>= \(\frac{2}{\sqrt{3}a}+\frac{1}{\sqrt{3}c}\)

=> \(\frac{\sqrt{b^2+2a^2}}{ab}\)\(\frac{\sqrt{c^2+2b^2}}{bc}\)\(\frac{\sqrt{a^2+2c^2}}{ac}\)>= \(\frac{3}{\sqrt{3}a}+\frac{3}{\sqrt{3}b}+\frac{3}{\sqrt{3}c}\)

\(\frac{3}{\sqrt{3}}\).(1/a+1/b+1/c) = \(\sqrt{3}\).(ab+bc+ca)/abc = \(\sqrt{3}\).abc/abc = \(\sqrt{3}\)

Dấu "=" xảy ra <=> a=b=c=3

=> ĐPCM

k mk nha

30 tháng 12 2017

thanks thiên tai nhá!

18 tháng 9 2018

\(\sqrt{\dfrac{a+b}{c+ab}}+\sqrt{\dfrac{b+c}{a+bc}}+\sqrt{\dfrac{c+a}{b+ac}}\)

30 tháng 9 2017

Bài này có xuất hiện rồi ,you vào mục tìm kiếm là thấy liền.

Lời giải vắn tắt:

\(A=\sum\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}=\sum\dfrac{ab+2c^2}{\sqrt{\left(ab+2c^2\right)\left(1+ab-c^2\right)}}\ge\sum\dfrac{2\left(ab+2c^2\right)}{1+2ab+c^2}=\sum\dfrac{2\left(ab+2c^2\right)}{\left(a+b\right)^2+2c^2}\ge\sum\dfrac{2\left(ab+2c^2\right)}{2\left(a^2+b^2\right)+2c^2}=\sum\left(ab+2c^2\right)=ab+bc+ca+2\)

( thay \(a^2+b^2+c^2=1\))

22 tháng 2 2018

Áp dụng BĐt cô-si, ta có \(\frac{2\left(a+b\right)^2}{2a+3b}\ge\frac{8ab}{2a+3b}=\frac{8}{\frac{2}{b}+\frac{3}{a}}\)

                                      \(\frac{\left(b+2c\right)^2}{2b+c}\ge\frac{8bc}{2b+c}=\frac{8}{\frac{2}{c}+\frac{1}{b}}\)

                                        \(\frac{\left(2c+a\right)^2}{c+2a}\ge\frac{8ac}{c+2a}\ge\frac{8}{\frac{1}{a}+\frac{2}{c}}\)

Cộng 3 cái vào, ta có 

A\(\ge8\left(\frac{1}{\frac{2}{b}+\frac{3}{a}}+\frac{1}{\frac{1}{b}+\frac{2}{c}}+\frac{1}{\frac{1}{a}+\frac{2}{c}}\right)\ge8\left(\frac{9}{\frac{3}{b}+\frac{4}{c}+\frac{4}{a}}\right)=8.\frac{9}{3}=24\)

Vậy A min = 24 

Neetkun ^^

22 tháng 2 2018

bạn tìm ra dấu= xảy ra khi nào

31 tháng 3 2017

Bài 2:

\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)

Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)

\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:

\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)

Thiết lập các BĐT tương tự:

\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)

Dấu "=" không xảy ra nên ta có ĐPCM

Lưu ý: lần sau đăng từng bài 1 thôi nhé !

31 tháng 3 2017

1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:

\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)

TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)

\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)

Cộng vế với vế ta được:

\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)

7 tháng 1 2020

4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)

\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)

\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)

Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)

Đẳng thức xảy ra khi ...(anh giải nốt ạ)

7 tháng 1 2020

@Cool Kid:

Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)

Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)

2 tháng 12 2016

Tìm GTNN a: $F= 14(a^2+b^2+c^2) + \dfrac{ab+bc+ca}{a^2b+b^2c+c^2a}$ | HOCMAI Forum - Cộng đồng học sinh Việt Nam

3 tháng 12 2016

Ta có:

\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

\(\Leftrightarrow\left(a^2b+b^2c+c^2a\right)^2\le\left(a^2+b^2+c^2\right)\left(a^2b+b^2c+c^2a\right)\le\frac{\left(a^2+b^2+c^2\right)^3}{3}\le\left(a^2+b^2+c^2\right)^4\)

\(\Rightarrow a^2b+b^2c+c^2a\le\left(a^2+b^2+c^2\right)^2\)

Ta lại có:

\(ab+bc+ca=\frac{1-\left(a^2+b^2+c^2\right)^2}{2}\)

Làm tiếp.