Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt 6a=x;2b=y;3c=z=>x+y+z=11
áp dụng bất đẳng thức Schwarts ta có:\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+y+z+3}=\frac{9}{14}\)
\(\Leftrightarrow\frac{28}{x+1}+\frac{28}{y+1}+\frac{28}{z+1}\ge\frac{28.9}{14}=18\)
\(\Leftrightarrow\frac{28}{x+1}-1+\frac{28}{y+1}-1+\frac{28}{z+1}-1\ge18-1-1-1=15\)
\(\Leftrightarrow\frac{27-x}{x+1}+\frac{27-y}{y+1}+\frac{27-z}{z+1}\ge15\)
\(\Leftrightarrow\frac{11-x+16}{x+1}+\frac{11-y+16}{y+1}+\frac{11-z+16}{z+1}\ge15\)
\(\Leftrightarrow\frac{y+z+16}{x+1}+\frac{z+x+16}{y+1}+\frac{x+y+16}{z+1}\ge15\)
\(\Leftrightarrow\frac{2b+3c+16}{6a+1}+\frac{6a+3c+16}{2b+1}+\frac{6a+2b+16}{3c+1}\ge15\)
=>đpcm
dấu "=" xảy ra khi \(a=\frac{11}{18};b=\frac{11}{6};c=\frac{11}{9}\)
\(P=\frac{2a+3b+3c-1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2c+1}{2017+c}\)
\(=\frac{6047-a}{2015+a}+\frac{6048-b}{2016+b}+\frac{6049-c}{2017+c}\)
\(=\frac{8062}{2015+a}+\frac{8064}{2016+b}+\frac{8066}{2017+c}-3\)
\(\ge\frac{\left(\sqrt{8062}+\sqrt{8064}+\sqrt{8066}\right)^2}{2015+2016+2017+a+b+c}-3=\frac{\left(\sqrt{8062}+\sqrt{8064}+\sqrt{8066}\right)^2}{8064}-3\)
Dấu = xảy ra khi ....
Ta có
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.\frac{3}{\sqrt[3]{abc}}\ge9\)
Dấu = xảy ra khi \(a=b=c=\frac{2014}{6}=\frac{1007}{3}\)
vỗ tay :) bài kt của thầy Hiệp ak
ukm