K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 4 2019

Cho \(a=b=c=1\)

\(\Rightarrow\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)^2=12< 33\)

Đề sai

NV
15 tháng 5 2019

Áp dụng BĐT cho các số dương: \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)

\(P=\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)^2\)

\(\Rightarrow P\ge\frac{1}{3}\left(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge\frac{1}{3}\left(a+b+c+\frac{9}{a+b+c}\right)^2=\frac{100}{3}>33\)

15 tháng 5 2019

cái bất đẳng thức này mình chưa học

NV
25 tháng 5 2019

a/ Biến đổi tương đương:

\(\Leftrightarrow a^2c+ab^2+bc^2\ge b^2c+ac^2+a^2b\)

\(\Leftrightarrow a^2c-a^2b+ab^2-ac^2+bc^2-b^2c\ge0\)

\(\Leftrightarrow a^2\left(c-b\right)-\left(ab+ac\right)\left(c-b\right)+bc\left(c-b\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(a^2+bc-ab-ac\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(a\left(a-b\right)-c\left(a-b\right)\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(a-c\right)\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(c-a\right)\left(b-a\right)\ge0\) luôn đúng do \(a\le b\le c\)

Vậy BĐT ban đầu đúng

Câu 2: Đề sai, cho \(a=b=c=1\Rightarrow3\ge6\) (sai)

Đề đúng phải là \(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(VT=\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}=\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+ac+bc}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Câu 3: Không phải với mọi x; y với mọi \(x;y\) dương

Biến đổi tương đương do mẫu số vế phải dương nên ta được quyền nhân chéo:

\(\Leftrightarrow3x^3\ge\left(2x-y\right)\left(x^2+xy+y^2\right)\)

\(\Leftrightarrow3x^3\ge2x^3+x^2y+xy^2-y^3\)

\(\Leftrightarrow x^3+y^3-x^2y-xy^2\ge0\)

\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)

31 tháng 12 2015

 ta co:  a/(1+b²)=(a+ba²-ab²)/(1+b²)=(a(1+b²)-a...  

Tuong tu: b/(1+c²)>=b-bc/2; c/(1+a²)>=c-ac/2.  

=> a/(1+b²)+b/(1+c²)+c/(1+a²)>=a+b+c-1/2(ab...  

Ma: 3(ab+bc+ca)<=(a+b+c)²=9=> ab+bc+ca <=3  

=>-1/2(ab+bc+ca)>=-3/2  

=> a+b+c-1/2(ab+bc+ca) >=3-3/2=3/2  

=> a/(1+b²)+b/(1+c²)+c/(1+a²)>= 3/2(dpcm)  

Dau "=" say ra <=> a=b=c=1