K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2020

Không mất tính tổng quát, chuẩn hóa a + b + c = 1

Khi đó, ta cần chứng minh: \(\frac{\left(a+1\right)^2}{2a^2+\left(1-a\right)^2}+\frac{\left(b+1\right)^2}{2b^2+\left(1-b\right)^2}+\frac{\left(c+1\right)^2}{2c^2+\left(1-c\right)^2}\le8\)

Xét bất đẳng thức phụ: \(\frac{\left(x+1\right)^2}{2x^2+\left(1-x\right)^2}\le4x+\frac{4}{3}\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{\left(3x-1\right)^2\left(4x+1\right)}{2x^2+\left(1-x\right)^2}\ge0\)*đúng*

Áp dụng, ta được: \(\frac{\left(a+1\right)^2}{2a^2+\left(1-a\right)^2}+\frac{\left(b+1\right)^2}{2b^2+\left(1-b\right)^2}+\frac{\left(c+1\right)^2}{2c^2+\left(1-c\right)^2}\)\(\le4\left(a+b+c\right)+4=4.1+4=8\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi a = b = c

25 tháng 7 2019

Chuẩn hóa ta có : \(a+b+c=3\)

=> \(\frac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}=\frac{\left(a+3\right)^2}{2a^2+\left(3-a\right)^2}=\frac{a^2+6a+9}{3\left(a^2-2a+3\right)}\)

Xét\(\frac{a^2+6a+9}{3\left(a^2-2a+3\right)}\le\frac{4}{3}a+\frac{4}{3}\)

<=> \(a^2+6a+9\le4\left(a+1\right)\left(a^2-2a+3\right)\)

<=> \(4a^3-5a^2-2a+3\ge0\)

<=> \(\left(a-1\right)^2\left(4a+3\right)\ge0\)luôn đúng

Khi đó 

\(VT\le\frac{4}{3}\left(a+b+c\right)+4=\frac{4}{3}.3+4=8\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c

AH
Akai Haruma
Giáo viên
14 tháng 1 2020

Bài 1:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)[a(b+c)+b(c+a)+c(a+b)]\geq (a+b+c)^2\)

\(\Rightarrow \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)}\)$(*)$

Áp dụng BĐT AM-GM dễ thấy: $a^2+b^2+c^2\geq ab+bc+ac$

$\Rightarrow (a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow ab+bc+ac\leq \frac{(a+b+c)^2}{3}(**)$

Từ $(*); (**)\Rightarrow \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq \frac{(a+b+c)^2}{2.\frac{(a+b+c)^2}{3}}=\frac{3}{2}$ (đpcm)

Dấu "=" xảy ra khi $a=b=c$

AH
Akai Haruma
Giáo viên
14 tháng 1 2020

Bài 2:

Áp dụng BĐT AM-GM:

\(\frac{a^3}{b(2c+a)}+\frac{b}{3}+\frac{2c+a}{9}\geq 3\sqrt[3]{\frac{a^3}{b(2c+a)}.\frac{b}{3}.\frac{2c+a}{9}}=a\)

\(\frac{b^3}{c(2a+b)}+\frac{c}{3}+\frac{2a+b}{9}\geq b\)

\(\frac{c^3}{a(2b+c)}+\frac{a}{3}+\frac{2b+c}{9}\ge c\)

Cộng theo vế và thu gọn ta có:

\(\frac{a^3}{b(2c+a)}+\frac{b^3}{c(2a+b)}+\frac{c^3}{a(2b+c)}\geq \frac{a+b+c}{3}=\frac{3}{3}=1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$

8 tháng 3 2019

\(\frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}\ge\frac{\left(a+b\right)^2}{a^2+b^2+2c^2}\)

\(\frac{b^2}{b^2+a^2}+\frac{c^2}{c^2+a^2}\ge\frac{\left(b+c\right)^2}{b^2+c^2+2a^2}\)

\(\frac{c^2}{c^2+b^2}+\frac{a^2}{a^2+b^2}\ge\frac{\left(c+a\right)^2}{c^2+a^2+2b^2}\)

\(\Rightarrow VT\le\frac{a^2+c^2}{a^2+c^2}+\frac{b^2+c^2}{b^2+c^2}+\frac{a^2+b^2}{a^2+b^2}=1+1+1=3\)

NV
8 tháng 3 2019

Áp dụng BĐT Cauchy-Schwarz: \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)

Ta có \(\frac{\left(a+b\right)^2}{a^2+b^2+2c^2}=\frac{\left(a+b\right)^2}{a^2+c^2+b^2+c^2}\le\frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}\)

Tương tự ta có:

\(\frac{\left(b+c\right)^2}{b^2+c^2+2a^2}\le\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\) ; \(\frac{\left(c+a\right)^2}{c^2+a^2+2b^2}\le\frac{c^2}{b^2+c^2}+\frac{a^2}{a^2+b^2}\)

Cộng vế với vế:

\(\frac{\left(a+b\right)^2}{a^2+b^2+2c^2}+\frac{\left(b+c\right)^2}{b^2+c^2+2a^2}+\frac{\left(c+a\right)^2}{c^2+a^2+2b^2}\le\frac{a^2+c^2}{a^2+c^2}+\frac{b^2+c^2}{b^2+c^2}+\frac{a^2+b^2}{a^2+b^2}=3\)

Dấu "=" xảy ra khi \(a=b=c\)

//Bạn chép đề sai, vế phải là số 3 chứ ko phải 1

15 tháng 11 2020

1)

\(2a+\frac{4}{a}+\frac{16}{a+2}=\left(a+\frac{4}{a}\right)+\left[\left(a+2\right)+\frac{16}{a+2}\right]-2\ge4+8-2=10\)

Dấu "=" xảy ra khi a=2

15 tháng 11 2020

2)

\(\hept{\begin{cases}\sqrt{a\left(1-4a\right)}=\frac{1}{2}\sqrt{4a\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4a+1-4a}{2}=\frac{1}{4}\\\sqrt{b\left(1-4b\right)}=\frac{1}{2}\sqrt{4\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4b+1-4b}{2}=\frac{1}{4}\\\sqrt{c\left(1-4c\right)}=\frac{1}{2}\sqrt{4c\left(1-4c\right)}\le\frac{1}{2}\cdot\frac{4c+1-4c}{2}=\frac{1}{4}\end{cases}}\)

\(\Rightarrow\sqrt{a\left(1-4a\right)}+\sqrt{b\left(1-4b\right)}+\sqrt{c\left(1-4c\right)}\le\frac{3}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{8}\)

NV
1 tháng 6 2020

Bạn tham khảo:

Câu hỏi của khoimzx - Toán lớp 9 | Học trực tuyến