K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2018

\(a+b+c=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)=0

\(\Leftrightarrow\)\(a^3+ab^2+ac^2-a^2b-a^2c-abc+a^2b+b^3+bc^2-ab^2-\)

\(abc-b^2c+ca^2+bc^2+c^3-abc-ac^2-bc^2\)=0

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\Leftrightarrow a^3+b^3-3abc=-c^3\)

29 tháng 3 2018

bạn thử tra mạng đi

16 tháng 5 2018

Ta có: \(a^3+b^3+c^3-3abc\) 

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\) 

\(=\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b\right)+3abc\) 

\(=\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b+c\right)\) 

\(=\left(a+b+c\right)^3-3\left(a+b+c\right)\left(ac+bc+ab\right)\) 

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\) (đúng với a,b,c>0)

16 tháng 5 2018

         \(a^3+b^3+c^3\ge3abc\)

\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc\ge0\)

\(\Leftrightarrow\)\(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\ge0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\ge0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\ge0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\)   (*)

Do  a,b,c > 0  =>   \(a+b+c>0\)  (1)

Áp dụng BĐT Cauchy ta có:

\(a^2+b^2\ge2ab\)

\(b^2+c^2\ge2bc\)       

\(c^2+a^2\ge2ca\)

suy ra:    \(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

       \(\Leftrightarrow\)\(a^2+b^2+c^2\ge ab+bc+ca\)

      \(\Leftrightarrow\) \(a^2+b^2+c^2-ab-bc-ca\ge0\)   (2)

Dấu "=" xảy ra  <=>   \(a=b=c\)

Từ (1) và (2) => BĐT (*) đc chứng minh

12 tháng 4 2017

\(A=a^3+b^3+c^3-3abc\)\(=\left(a^3+b^3\right)+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(=\dfrac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\)

\(=\dfrac{1}{2}\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+c^2\right)\right]\)

\(=\dfrac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)

Dế thấy: \(\left\{{}\begin{matrix}a+b+c>0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2>0\end{matrix}\right.\)(do a,b,c là 3 số dương khác nhau đôi một)

\(A=\dfrac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]>0\)