Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
\(\frac{b+c+d}{\left(b-a\right)\left(c-a\right)\left(d-a\right)\left(x-a\right)}=\frac{\left(a+b+c+d-x\right)+\left(x-a\right)}{\left(b-a\right)\left(c-a\right)\left(d-a\right)\left(x-a\right)}\)\(=\frac{\left(a+b+c+d-x\right)}{\left(b-a\right)\left(c-a\right)\left(d-a\right)\left(x-a\right)}+\frac{1}{\left(b-a\right)\left(c-a\right)\left(d-a\right)}\)
Áp dụng hoán vị vòng \(b\rightarrow c\rightarrow d\rightarrow a\rightarrow b\) vào VT , ta được :
\(\left(a+b+c+d-x\right)\)[\(\frac{1}{\left(a-b\right)\left(a-c\right)\left(a-d\right)\left(a-x\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)\left(b-d\right)\left(b-x\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)\left(c-d\right)\left(c-x\right)}\)\(+\frac{1}{\left(d-a\right)\left(d-b\right)\left(d-c\right)\left(d-x\right)}\).
Quy đồng mẫu thức và tính toán biểu thức trong [ ] ta được :
\(\frac{-1}{\left(x-a\right)\left(x-b\right)\left(x-c\right)\left(x-d\right)}\)
Vậy ...............
Ta có:
\(\left(a+b\right)\left(b+c\right)\left(c+d\right)\left(d+a\right)\)
\(=\left(\frac{2017}{c}+\frac{2017}{d}\right)\left(\frac{2017}{d}+c\right)\left(c+d\right)\left(d+\frac{2017}{c}\right)\)
\(=\frac{2017}{c^2d^2}\left(c+d\right)^2\left(cd+2017\right)^2\)
\(=\frac{2017}{c^2d^2}\left(c^2d+d^2c+2017c+2017d\right)^2\left(1\right)\)
Ta lại có:
\(\left(a+b+c+d\right)^2\)
\(=\left(\frac{2017}{c}+\frac{2017}{d}+c+d\right)^2\)
\(=\frac{1}{c^2d^2}\left(c^2d+d^2c+2017c+2017d\right)^2\left(2\right)\)
Từ (1) và (2) \(\Rightarrow M=2017\)
LỜI GIẢI
a+cb+d=a−cb−da+cb+d=a−cb−d
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
a+cb+d=a−cb−d=a+c+a−cb+d+b−d=2a2b=ab(1)a+cb+d=a−cb−d=a+c+a−cb+d+b−d=2a2b=ab(1)
a+cb+d=a−cb−d=a+c−a+cb+d−b+d=2c2d=cd(1)a+cb+d=a−cb−d=a+c−a+cb+d−b+d=2c2d=cd(1)
Từ (1)(1) và (2)(2) ta có:
ab=cdab=cd
Đặt:
ab=cd=kab=cd=k ⇒{a=bkc=dk⇒{a=bkc=dk
Thay vào tính
Đặt \(A=\frac{\left(a+b+c+d\right)\left(a+b+c\right)\left(a+b\right)}{abcde}\)
\(\Rightarrow16A=\frac{\left(a+b+c+d+e\right)^2\left(a+b+c+d\right)\left(a+b+c\right)\left(a+b\right)}{abcde}\)
Áp dụng AM-GM ta có:
\(\Rightarrow16A\ge\frac{4e\left(a+b+c+d\right)^2\left(a+b+c\right)\left(a+b\right)}{abcde}\)
\(\Rightarrow16A\ge\frac{4e.4d\left(a+b+c\right)^2\left(a+b\right)}{abcde}\)
\(\Rightarrow16A\ge\frac{4e.4d.4c\left(a+b\right)^2}{abcde}\)
\(\Rightarrow16A\ge\frac{4e.4d.4c.4ab}{abcde}\)
\(\Rightarrow A\ge16\)
Dấu "=" xảy ra khi đồng thời:
\(\text{a+b+c+d+e=4, a+b+c+d=e, a+b+c=d, a+b=c, a=b}\)
\(\Rightarrow e=2,d=1,c=\frac{1}{2},a=\frac{1}{4},b=\frac{1}{4}\)
1) \(M=a^2b^2c^2\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
Em chú ý bài toán sau nhé: Nếu a+b+c=0 <=> \(a^3+b^3+c^3=3abc\)
CM: có:a+b=-c <=> \(\left(a+b\right)^3=-c^3\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
Chú ý: a+b=-c nên \(a^3+b^3+c^3=3abc\)
Do \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Thay vào biểu thwusc M ta được M=3abc (ĐPCM)
2, em có thể tham khảo trong sách Nâng cao phát triển toán 8 nhé, anh nhớ không nhầm thì bài này trong đó
Nếu không thấy thì em có thể quy đồng lên mà rút gọn
Xin phép sửa đề nhé: " Nếu \(\left(a+b+c+d\right)\left(1-b-c-d\right)=\left(a-b-c-d\right)\left(a+b+c+d\right)\)thì \(\frac{a}{b}=\frac{c}{d}\)"
Giải
Từ giả thiết suy ra a = b = c = d
Ta có:\(\left(a+b+c+d\right)\left(1-b-c-d\right)=\left(a-b-c-d\right)\left(a+b+c+d\right)\)
Suy ra: \(\frac{a+b+c+d}{a+b+c+d}=\frac{a-b-c-d}{1-b-c-d}\)
Do a = b =c =d nên \(\frac{a+b+c+d}{a+b+c+d}=\frac{a-b-c-d}{1-b-c-d}\Leftrightarrow\frac{4a}{4a}=\frac{4b}{4b}=\frac{4c}{4c}=\frac{4d}{4d}\)
Theo tỉ lệ thức ta có thể suy ra \(\frac{4a}{4b}=\frac{4c}{4d}\Leftrightarrow\frac{a}{b}=\frac{c}{d}^{\left(đpcm\right)}\)
Mạo phép sửa đề:
\(\left(a+b+c+d\right)\left(a-b-c-d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)
\(\Rightarrow a^2-\left(b+c+d\right)^2=\left(a+d\right)^2-\left(b-c\right)^2\)