Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Bài này đề lỗi, ko thể có dấu =:)) bđt phải đúng đến từng chi tiết chứ kiểu này ai chơi:D
b) Làm theo gợi ý của thầy bạn nhé:
Dễ có : \(a^2-\left(b-c\right)^2\le a^2\)(đẳng thức xảy ra khi b = c)
Hay: \(\left(c+a-b\right)\left(a+b-c\right)\le a^2\)
Hoàn toàn tương tự: \(\left(b+c-a\right)\left(a+b-c\right)\le b^2\); \(\left(b+c-a\right)\left(c+a-b\right)\le0\)
Nhân các bđt trên với nhau: \(\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\le\left(abc\right)^2\)
Mà a, b,c là độ dài 3 cạnh tam giác nên các hạng tử \(a;b;c;a+b-c;b+c-a;c+a-b\) đều dương. Do đó \(\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)
Tui làm rất kỹ rồi nhé:)
Câu trả lời hay nhất: Theo hằng đẳng thức
a^2+b^2=(a+b)^2-2ab;
c^2+d^2=(c+d)^2-2cd.
Suy ra a^2+b^2 và a+b cùng chẵn, hoặc cùng lẻ;
c^2+d^2 cùng chẵn hoặc cùng lẻ. Kết hợp với
a^2+b^2=c^2+d^2 ta suy ra a+b và c+d cùng chẵn,
hoặc cùng lẻ. Từ đó a+b+c+d chẵn, và vì
a+b+c+d>=4 nên a+b+c+d là hợp số.
Ta có: A=3(a+c)(b+d) <=> 2A/3 = 2(a+c)(b+d)
Theo Cauchy => 2A/3 \(\le\)(a+c)2+(b+d)2
Mặt khác, theo BĐT Bunhiacopxki có:
\(\left(a+c\right)^2=\left(1.a+\frac{1}{\sqrt{2}}.\sqrt{2}c\right)^2\le\left(1+\frac{1}{2}\right)\left(a^2+2c^2\right)=\frac{3}{2}\left(a^2+2c^2\right)\)
Tương tự: \(\left(b+d\right)^2=\left(1.b+\frac{1}{\sqrt{2}}.\sqrt{2}d\right)^2\le\left(1+\frac{1}{2}\right)\left(b^2+2d^2\right)=\frac{3}{2}\left(b^2+2d^2\right)\)
=> \(\frac{2A}{3}\le\frac{3}{2}\left(a^2+b^2+2c^2+2d^2\right)=\frac{3}{2}.1=\frac{3}{2}\)
=> \(A\le\frac{9}{4}=>A_{max}=\frac{9}{4}\)
b1: ta có: a^2+b^2 >0 ; b^2 +c^2>0 ; c^2 +a^2>0
=> \(a^2+b^2\ge2\sqrt{a^2.b^2}\) (BĐT cau chy)
\(b^2+c^2\ge2\sqrt{b^2.c^2}\) (BĐT cau chy)
\(c^2+a^2\ge2\sqrt{c^2.a^2}\)(BĐT cauchy)
=>\(\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge8a^2.b^2.c^2\)
Dấu '= xảy ra khi a=b=c (đpcm)
a, 3x2 - 8x + 4
= 3x2 - 6x - 2x + 4
= 3x(x - 2) - 2(x - 2)
= (3x - 2)(x - 2)
b, x2 - 4xy + 3y2
= x2 - xy - 3xy + 3y2
= x(x - y) - 3y(x - y)
= (x - 3y)(x - y)
\(a)3x^2-8x+4=3x^2-6x-2x+4=3x\left(x-2\right)-2\left(x-2\right)=\left(3x-2\right)\left(x-2\right)\)
\(b)x^2-4xy+3y^2=x^2-xy-3xy+3y^2=x\left(x-y\right)-3y\left(x-y\right)=\left(x-3y\right)\left(x-y\right)\)
\(c)2x^2+3881x-17505=2x^2+3890x-9x-17505=2x\left(x+1945\right)-9\left(x+1945\right)\)
\(=\left(2x-9\right)\left(x+1945\right)\)
4a) \(\left(a+b\right)^2=a^2+2ab+b^2\)
\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+b^2+2ab\)
=> (a+b)^2=(a-b)^2+4ab
- 2x – x2 + 2 – x – (3x2 + 6x + 5x +10) = – 4x2 + 2
- 2x – x2 + 2 – x – 3x2 – 6x – 5x – 10 = – 4x2 + 2 –10x = 10 x = – 1
- 2x2 – 6x + x – 3 = 0
(x – 3)(2x + 1) = 0
x = 3 hay x = -1/2
chứng minh cái gì vậy bạn ???