K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2017

Bài 1:

Cho a,b,c,d là các số thực dương. Tìm giá trị nhỏ nhất của biểu thức: - K2PI – TOÁN THPT | Chia sẻ Tài liệu, đề thi, hỗ trợ giải toán

Bài 2:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1+1+1\right)\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\)

Cần chứng minh \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\)

Áp dụng BĐT AM-GM ta có:

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{a}}=3\) (đúng)

Khi a=b=c

13 tháng 8 2017

Thanks

30 tháng 11 2019

Theo t/c tỉ lệ thức ta có :

\(\frac{a}{a+b+c}< 1\Rightarrow\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\) (1)

Mặt khác : \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\) (2)

Từ (1) và (2) => \(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\) (3)

Tương tự :

\(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{a+b}{a+b+c+d}\) (4)

\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{b+c}{a+b+c+d}\) (5)

\(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}\) (6)

Cộng vế với vế của (3),(4),(5),(6), ta có :

\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\) (đpcm)

2 tháng 6 2017

câu 1 tớ bị nhầm đề là c/a :)

24 tháng 9 2018

đề sai rồi

25 tháng 9 2018

Sửa đề: \(1< \dfrac{a}{a+b+c}+\dfrac{b}{a+b+d}+\dfrac{c}{a+c+d}+\dfrac{d}{b+c+d}< 2\)

Ta có : \(\dfrac{a}{a+b+c}>\dfrac{a}{a+b+c+d}\) (1)

\(\dfrac{b}{a+b+d}>\dfrac{b}{a+b+c+d}\) (2)

\(\dfrac{c}{a+c+d}>\dfrac{c}{a+b+c+d}\) (3)

\(\dfrac{d}{c+b+d}>\dfrac{d}{a+b+c+d}\) (4)

Từ (1)(2)(3)(4) =>\(\dfrac{a}{a+b+c}+\dfrac{b}{a+b+d}+\dfrac{c}{a+c+d}+\dfrac{d}{b+c+d}>\dfrac{a+b+c+d}{a+b+c+d}=1\)

Lại có:\(\dfrac{a}{a+b+c}< \dfrac{a+d}{a+b+c+d}\)(Vì a<a+b+c)

\(\dfrac{b}{a+b+d}< \dfrac{b+c}{a+b+c+d}\)(Vì b<a+b+d)

\(\dfrac{c}{a+c+d}< \dfrac{b+c}{a+b+c+d}\)(Vì c<c+a+d)

\(\dfrac{d}{b+c+d}< \dfrac{d+a}{a+b+c+d}\)(Vì d<d+b+c)

=>\(\dfrac{a}{a+b+c}+\dfrac{b}{a+b+d}+\dfrac{c}{a+c+d}+\dfrac{d}{b+c+d}< \dfrac{2\left(a+b+c+d\right)}{a+b+c+d}=2\\ \text{Vậy 1< ...< 2}\)

28 tháng 3 2021

xí câu 1:))

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)

Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )

Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )

Vậy ta có đpcm

Đẳng thức xảy ra <=> a=2 => x=y=2

1 tháng 8 2018

Đặt \(\left\{{}\begin{matrix}x=a+b\\y=c+d\end{matrix}\right.\)

Thế vào đề ta được

\(xy+4\ge2\left(x+y\right)\)

\(\Leftrightarrow xy-2x+4-2y\ge0\)

\(\Leftrightarrow\left(y-2\right)\left(x-2\right)\ge0\)

Chứng minh \(\left(y-2\right)\left(x-2\right)\ge0\)

Ta có : (Đây là phần mình chứng minh nha, có gì sai mong bạn chỉ bảo ) hihi

\(\left\{{}\begin{matrix}x=a+b\\y=c+d\end{matrix}\right.\)

Áp dụng bđt Cosi ta được :

\(\left\{{}\begin{matrix}x=a+b\ge2\sqrt{ab}\\y=c+d\ge2\sqrt{cd}\end{matrix}\right.\)

Mà ab=cd=1

Nên \(\left\{{}\begin{matrix}x=a+b\ge2\\y=c+d\ge2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\y-2\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x-2\right)\left(y-2\right)\ge0\)

=> ĐPCM haha

DD
4 tháng 6 2021

\(a+b\ge2\sqrt{ab},b+c\ge2\sqrt{bc},c+d\ge2\sqrt{cd},d+e\ge2\sqrt{de},\)

\(e+f\ge2\sqrt{ef},f+a\ge2\sqrt{fa}\)

Suy ra \(\left(a+b\right)\left(b+c\right)\left(c+d\right)\left(d+e\right)\left(e+f\right)\left(f+a\right)\ge2^6\sqrt{a^2b^2c^2d^2e^2f^2}=64\).

Dấu \(=\)xảy ra khi \(a=b=c=d=e=f=1\).