K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2019

Vì a+b+c+d=0\(\Rightarrow a+b+c=-d\Rightarrow ac+bc+c^2=-cd\)

\(\Rightarrow\)\(ab-cd=ab+ac+bc+c^2=\left(a+c\right)\left(b+c\right)\)

Tương tự ta có \(bc-ad=\left(a+b\right)\left(a+c\right)\)

                        \(ac-bd=\left(a+b\right)\left(b+c\right)\)

Từ 3 điều trên ta suy ra đpcm

I don't now

or no I don't

..................

sorry

22 tháng 7 2019

1a) \(A+B+C\)

\(=\left(x-y\right)^2+4xy-\left(x+y\right)^2\)

\(=\left(x^2-2xy+y^2\right)+4xy-\left(x^2+2xy+y^2\right)\)

\(=\left(x^2-x^2\right)+\left(y^2-y^2\right)+\left(4xy-2xy-2xy\right)=0\left(đpcm\right)\)

6 tháng 8 2018

a) Ta có:

\(a-b=c+d\)

\(\Rightarrow a-b-c-d=0\)

\(\Rightarrow2a\left(a-b-c-d\right)=0\)

\(\Rightarrow2a^2-2ab-2ac-2ad=0\)

Do đó:

\(a^2+b^2+c^2+d^2\)

\(=a^2+b^2+c^2+d^2+2a^2-2ab-2ac-2ad\)

\(=\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)\)

\(=\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2\)

Vậy với các số nguyên a, b, c, d thỏa mãn a - b = c + d thì a2 + b2 + c2 + d2 luôn là tổng của ba số chính phương

b) Ta có:

\(a+b+c+d=0\)

\(\Rightarrow a+b+c=-d\)

\(\Rightarrow a^2+ab+ac=-da\)

\(\Rightarrow bc-da=a^2+ab+ac+bc\)

\(\Rightarrow bc-da=a\left(a+b\right)+c\left(a+b\right)\)

\(\Rightarrow bc-da=\left(a+b\right)\left(a+c\right)\left(1\right)\)

Ta lại có:

\(a+b+c+d=0\)

\(\Rightarrow a+b+c=-d\)

\(\Rightarrow ac+bc+c^2=-dc\)

\(\Rightarrow ab-cd=ac+bc+c^2+ab\)

\(\Rightarrow ab-cd=c\left(a+c\right)+b\left(a+c\right)\)

\(\Rightarrow ab-cd=\left(a+c\right)\left(b+c\right)\left(2\right)\)

Ta lại có:

\(a+b+c+d=0\)

\(\Rightarrow a+b+c=-d\)

\(\Rightarrow ab+b^2+bc=-db\)

\(\Rightarrow ca-db=ca+ab+b^2+bc\)

\(\Rightarrow ca-db=a\left(b+c\right)+b\left(b+c\right)\)

\(\Rightarrow ca-db=\left(b+c\right)\left(a+b\right)\left(3\right)\)

Thay (1) , (2) và (3) vào biểu thức ( ab - cd )( bc - da )( ca - db ) ta được:

\(\left(ab-cd\right)\left(bc-da\right)\left(ca-db\right)\)

\(=\left(a+c\right)\left(b+c\right)\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\)

\(=\left(a+c\right)^2.\left(b+c\right)^2.\left(a+b\right)^2\)

\(=\left[\left(a+c\right)\left(b+c\right)\left(a+b\right)\right]^2\)

Vậy với các số nguyên a, b, c, d thỏa mãn a + b + c + d = 0 thì ( ab - cd )( bc - da )( ca - db ) là số chính phương

6 tháng 8 2018

@Yukru Cậu giỏi quá! Cảm ơn cậu nhiều. Chắc cậu năm nay 8 lên 9 rồi nhỉ?

27 tháng 7 2016

Mình chỉ biết câu 2 thoi được hong?

n2+n+1

= n2+n+\(\frac{1}{4}\)+\(\frac{3}{4}\)

= (n+\(\frac{1}{2}\))2 +\(\frac{3}{4}\)

Chứng tỏ đó không phải là số chính phương

1 tháng 11 2019

Trả lời câu 1 thôi nha

Xét \(ab+cd=ab\left(c^2+d^2\right)+cd\left(a^2+b^2\right)\)Vì a^2+b^2=c^2+d^2=1

                      \(=\)\(abc^2+abd^2+a^2cd+b^2cd\)  

                      \(=ad\left(bd+ac\right)+bc\left(bd+ac\right)\)

                      \(=\left(ad+bc\right)\left(bd+ac\right)=0\left(đpcm\right)\)

DD
16 tháng 7 2021

Câu hỏi của lep. - Toán lớp 8 - Học trực tuyến OLM

25 tháng 6 2017

 a+b+c+d=0 
=>a+b=-(c+d) 
=> (a+b)^3=-(c+d)^3 
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d) 
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d) 
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d)) 
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (đpcm)

25 tháng 6 2017

hey you, còn câu b,c?