K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2017

Sơn ơi bài tương tự nè:https://olm.vn/hoi-dap/question/1015688.html

22 tháng 10 2017

Ta có: a+b=x+y

=> a=x=y=b

vậy a2018+b2018=x2018+y2018

19 tháng 8 2018

Ta có : \(a^3+b^3=c\left(3ab-c^2\right)\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-bc-ca+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) ( Vì \(a+b+c=3\) )

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow a=b=c\)

Mà : \(a+b+c=3\Rightarrow a=b=c=1\)

\(\Rightarrow A=675\left(1^{2018}+1^{2018}+1^{2018}\right)+1=675.3+1=2026\)

20 tháng 10 2017

tau méc thầy hùng

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

Lời giải:

Quy nạp. Ta chứng minh tổng quát rằng \(a^k+b^k=x^k+y^k(*)\) với \(k\in\mathbb{N}\)

Với $k=1,k=2$: hiển nhiên theo giả thiết.

............

Giả sử điều \((*)\) đúng tới $k=n$. Ta sẽ chứng minh nó cũng đúng với $k=n+1$. Tức là \(a^{n+1}+b^{n+1}=x^{n+1}+y^{n+1}\)

Thật vậy:

\(a^{n+1}+b^{n+1}=(a^n+b^n)(a+b)-a^nb-ab^n\)

\(=(x^n+y^n)(x+y)-ab(a^{n-1}+b^{n-1})\)

\(=(x^n+y^n)(x+y)-ab(x^{n-1}+y^{n-1})\)

\(a^2+b^2=x^2+y^2\Rightarrow (a+b)^2-2ab=(x+y)^2-2xy\)

Mà $a+b=x+y$ nên \(2ab=2xy\Rightarrow ab=xy\)

\(\Rightarrow a^{n+1}+b^{n+1}=(x^n+y^n)(x+y)-xy(x^{n-1}+y^{n-1})=x^{n+1}+y^{n+1}\)

Quy nạp hoàn thành. Ta luôn có $(*)$. Thay $k=2018$ ta có đpcm.