K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2018

doan thi khanh linh copy đáp án trong câu hỏi của bạn Dương Nguyễn Ngọc Khánh 

Bài làm của mình:

Có a2 + b= c+ d2

\(\Rightarrow\) a2 - c= d2 - b2

\(\Rightarrow\)(a-c)(a+c) = (d-b)(d+b)

Mà theo đề bài a + b = c + d

\(\Rightarrow\) a - c = d - b

Nếu a = c

\(\Rightarrow\) a - c = d - b = 0

\(\Rightarrow\) d = b

\(\Rightarrow\) a2013 = c2013 và d2013 = b2013

\(\Rightarrow\) a2013 + b2013 = c2013 + d2013

Tương tự với a \(\ne\) c

6 tháng 1 2018
 

a+b=c+d

=> (a+b)2=(c+d)2

=> a2+2ab+b2=c2+2cd+d2

=>2ab=2cd

=> a2-2ab+b2=c2-2cd+d2

=> (a-b)2=(c-d)2

Th1: a-b=c-d

Mà a+b=c+d

=> a-b+a+b=c+d+c-d

=> 2a=2c => a=c=> b=d=> a2013+b2013= c2013+d2013 (1)

Th2: a-b=d-c

Mà a+b=c+d

=> a+b+a-b= c+d+d-c

=>2a=2d=>a=d=>b=c=> a2013+b2013=c2013+d2013(2)

Từ (1) và (2) => đpcm

 
 
7 tháng 1 2021

a+b=c+d⇔(a+b)2=(c+d)2⇔a2+b2+2ab=c2+d2+2cd⇔ab=cd⇔−2ab=−2cd⇔(a−b)2=(c−d)2⇔a−b=|c−d|⇔a=c∨a=d→Q.E.Da+b=c+d⇔(a+b)2=(c+d)2⇔a2+b2+2ab=c2+d2+2cd⇔ab=cd⇔−2ab=−2cd⇔(a−b)2=(c−d)2⇔a−b=|c−d|⇔a=c∨a=d→Q.E.D

8 tháng 8 2016

Vì a+b=c+d;\(a^2+b^2=c^2+d^2\)nên:\(a^{2013}+b^{2013}=\left(a+b\right)^{2013}\)và \(c^{2013}+d^{2013}=\left(c+d\right)^{2013}\)vậy

\(\left(a+b\right)^{2013}=\left(c+d\right)^{2013}\).Đến đây ta thấy a+b=c+d nên chắc chắn \(a^{2013}+b^{2013}=c^{2013}+d^{2013}\)

8 tháng 8 2016

ai có thể giải thích cho mk hiểu tại sao a2013+b2013=(a+b)2013 đc ko