K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2021

ta có \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)

\(\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\)

...

tương tự và cộng lại \(=>M>\frac{a+b+c+d}{a+b+c+d}=1\)(1)

Lại có \(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)

\(\frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)

...

tương tự và cộng lại \(=>M< \frac{a+b+b+c+c+d+d+a}{a+b+c+d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)(2)

Từ 1 và 2 = > 1<m<2 ( đpcm)

6 tháng 5 2021

nhìn vậy mà bảo chị à  D:

nghĩa là tiếp tục làm giống như vậy rồi cộng theo từng vế á

12 tháng 5 2016

Ta có: a/a+b+c>a/a+b+c+d

          b/a+b+d>b/a+b+c+d

          c/b+c+d>c/a+b+c+d

          d/a+c+d>d/a+b+c+d

Suy ra: (a/a+b+c)+(b/a+b+d)+(c/b+c+d)+(d/a+c+d)>(a/a+b+c+d)+(b/a+b+c+d)+(c/a+b+c+d)+(d/a+b+c+d)

Vậy M>1 (1)

Lại có: a/a+b+c<a+d/a+b+c+d

           b/a+b+d<b+c/a+b+c+d

           c/b+c+d<a+c/a+b+c+d

           d/a+c+d<b+d/a+b+c+d

Suy ra: (a/a+b+c)+(b/a+b+d)+(c/b+c+d)+(d/a+c+d)<(a+d/a+b+c+d)+(b+c/a+b+c+d)+(a+c/a+b+c+d)+(b+d/a+b+c+d)

Vậy: M<2 (2) (cậu tự tính vế sau nhé!)

Từ (1) và (2), suy ra: 1<M<2

Vậy M ko phải là STN