K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2015

b = (a + c) : 2

Thay vào ta có :

\(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{\left(a+c\right):2}+\frac{1}{d}\right)\)

\(\Leftrightarrow\frac{1}{c}=\frac{1}{2}.\left(\frac{2}{a+c}+\frac{1}{d}\right)\)

\(\Leftrightarrow\frac{1}{c}=\frac{1}{a+c}+\frac{1}{2d}\)

\(\Rightarrow\frac{a}{c.\left(a+c\right)}=\frac{1}{2d}\)

.....

9 tháng 4 2020

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\Rightarrow\hept{\begin{cases}\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\\\frac{a^2-b^2}{c^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\end{cases}}\)

\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

và \(\Rightarrow\hept{\begin{cases}\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bk+b}{dk+d}\right)^2=\frac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\frac{b^2}{d^2}\\\frac{a^2+b^2}{c^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\end{cases}}\)

\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

 4 đề cô Hòa đây nhé Hoàng https://olm.vn/thanhvien/1109157   . Mai thi rồi chúc thi tốt nhé my friend . Phải mang giải về nhé.  Đề 1 :  Đề trường Đăng Đạo năm 2013-2014Bài 1 : ( 1,5 điểm )a) Thực hiện phép tính :       \(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^.-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)b) Tính tỉ...
Đọc tiếp

 4 đề cô Hòa đây nhé Hoàng https://olm.vn/thanhvien/1109157   . Mai thi rồi chúc thi tốt nhé my friend . Phải mang giải về nhé. 

 Đề 1 :  Đề trường Đăng Đạo năm 2013-2014

Bài 1 : ( 1,5 điểm )

a) Thực hiện phép tính : 

      \(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^.-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)

b) Tính tỉ số \(\frac{A}{B}\) biết \(A=\frac{34}{7.13}+\frac{51}{13.22}+\frac{85}{22.37}+\frac{68}{37.49};B=\frac{39}{7.16}+\frac{65}{16.31}+\frac{52}{31.43}+\frac{26}{43.49}\)

Bài 2: ( 2 điểm ) Tìm x biết 

a) \(\left(\frac{2}{3}\right)^{2x+3}=\frac{2187}{128}\)

b) \(\left(2x-5\right)^{2007}=\left(2x-5\right)^{2005}\)

c) \(|x-7|+2x+5=6\)

Bài 3 ( 2 điểm )

a) Cho a+b+c =1010 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{201}\)Tính \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

b) Cho x = by+cz ; y= ax+cz ; z=ax+by

Chứng minh rằng \(H=\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=2\)

Bài 4 ( 1,5 điểm )

a) Số A được chia thành 3 số theo tỉ lệ \(\frac{2}{5}:\frac{3}{4}:\frac{1}{6}\). Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A.

b) Tìm giá trị nhỏ nhất của \(A=|x-2006|=|2007-x|\) Khi x thay đổi

Bài 5 :

Cho tam giác cân ABC ( AB=AC ). Trên tia đối của tia  BC và CB lấy theo thứ tự các điểm D và E sao cho BD=CE.

a) Chứng minh tam giác ADE là tam giác cân

b) Gọi M là trung điểm của BC. Chứng minh AM là tia phân giác của góc DAE.

c) Từ B và C kẻ BH và Ck theo thứ tự vuông góc với AD và AE. Chứng minh BH=CK.

d) Chứng minh ba đường thẳng AM,BH và CK gặp nhau tại 1 điểm >

e) Gọi 2 tia phân giác ngoài tại các đỉnh D và E của tam giác ADE là F. Chứng minh rằng F thuộc tia AM và khoảng cách từ F đến 2 cạnh của tam giác ADE bằng nhau 

0
2 tháng 9 2019

ĐẶT K NHA

2 tháng 9 2019

\(Dat:\frac{A}{B}=\frac{C}{D}=k\Rightarrow A=Bk;C=Dk\)

\(\Rightarrow\frac{A^2+B^2}{C^2+D^2}=\frac{B^2\left(k^2+1\right)}{D^2\left(k^2+1\right)}=\frac{B^2}{D^2};\left(\frac{A-B}{C-D}\right)^2=\left(\frac{B\left(k-1\right)}{D\left(k-1\right)}\right)^2=\frac{B^2}{D^2}\Rightarrow dpcm\)

4 tháng 6 2016

a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: 

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\Rightarrow\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(đpcm)

b) Áp dụng kết quả phần a) và tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a+b}{a-b}=\frac{c+d}{c-d}=\frac{a+b+c+d}{a-b+c-d}=\frac{a+b-c-d}{a-b-c+d}\)(chỗ này mình phá ngoặc luôn nhé)

\(\Rightarrow\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)(đpcm)

5 tháng 6 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow\)a=bk , c=dk

Ta có:

\(\left(\frac{a+b}{c+d}\right)^2=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\)\(\frac{\left(b\left(k+1\right)\right)^2}{\left(d\left(k+1\right)\right)^2}=\frac{b^2\times\left(k+1\right)^2}{d^2\times\left(k+1\right)^2}=\frac{b^2}{d^2}\)( 1 )

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2\times k^2+b^2}{d^2\times k^2+d^2}\)\(\frac{b^2\times\left(k^2+1\right)}{d^2\times\left(k^2+1\right)}=\frac{b^2}{d^2}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)(dpcm)

5 tháng 6 2016

* Giả sử tất cả các tỷ lệ thức đều có nghĩa.

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\times\frac{b}{d}=\frac{b}{d}\times\frac{b}{d}\Rightarrow\frac{ab}{cd}=\frac{b^2}{d^2}=\frac{a^2}{c^2}=\frac{2ab}{2cd}\)

\(=\frac{a^2+2ab+b^2}{c^2+2cd+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)(ĐPCM)

                                                          Đề kiểm tra học sinh giỏi lớp 7 ( Thời gian 120 phút )Bài 1:( 6đ)a)Tính \(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)b) Tìm x,y,z biết: \(3.\left(x-1\right)=2.\left(y-2\right);4.\left(y-2\right)=3.\left(z-3\right)\)và \(2x+3y-z=50\)c) Cho \(B=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}+...+\frac{2499}{2500}\). Chứng tỏ B không là...
Đọc tiếp

                                                          Đề kiểm tra học sinh giỏi lớp 7 ( Thời gian 120 phút )

Bài 1:( 6đ)

a)Tính \(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)

b) Tìm x,y,z biết: \(3.\left(x-1\right)=2.\left(y-2\right);4.\left(y-2\right)=3.\left(z-3\right)\)và \(2x+3y-z=50\)

c) Cho \(B=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}+...+\frac{2499}{2500}\). Chứng tỏ B không là số nguyên

Bài 2:( 3đ )

a) Chứng minh rằng: \(2a-5b+6c⋮17\)nếu \(a-11b+3c⋮17\)( a,b,c thuộc Z)

b) Biết \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\). Chứng minh rằng : \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

Bài 3: (3đ)

a) Độ dài ba cạnh của tam giác tỉ lệ với 2;3;4. Ba chiều cao tương ứng với 3 cạnh đó tỉ lệ với ba số nào ?

b) Ba phân số có tổng bằng \(\frac{213}{70}\), các tử của chúng tỉ lệ với 3;4;5 các mẫu của chúng tỉ lệ với 5;1;2. Tìm ba phân số đó.

Bài 4:(6đ)

Cho tam giác ABC vuông tại A ( AB < AC ). M là trung điểm của BC, trên tia đối của tia MA lấy N sao cho MA=MN. Vẽ AH vuông góc với BC tại H. Trên tia HC lấy điểm D sao cho HD=HA. Đường thẳng vuông góc với BC tại D cắt AC ở E.

1. Chứng minh tam giác ABC và tam giác CNA bằng nhau.

2.Chứng minh AB=AE

3.Gọi K là trung điểm BE. Tính số đo góc CHK.

Bài 5(2đ)

a) Cho 2n+1 là số nguyên tố ( n > 2 ). Chứng minh 2n-1 là hợp số.

b) Cho f(x)=ax2+bx+c Với a,b,c là các số hữu tỉ.

 Chứng tỏ rằng: \(f\left(-2\right).f\left(-3\right)\le0\). Biết rằng 13a+b+2c=0.

 

 

 

 Tìm thiên tài nek. Hoặc có thể tham khảo cho kì thi thành phố. 

 

2
11 tháng 3 2019

tuyển học sinh giỏi 7

11 tháng 3 2019

cấm đăng nhùng nhằng ko giải thì thui  tui tích sai 3 cái mỗi ngày đấy. Muốn nói gì thì chat riêng

14 tháng 5 2016

2.ta có |x-1|+(y+2)mũ 20=0=>x-1=0 đồng thời y+2=0

<=>x=1 và y=-2

Thay x=1 y=-2 vào B ta có:13.(1)^5-5.(-2)^3+2016=1989