Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(a+b+c+d=0\) thì ta có dãy tỷ số là đúng.
\(\Rightarrow a+b=-\left(c+d\right);b+c=-\left(d+a\right);c+d=-\left(a+b\right);d+a=-\left(b+c\right)\)
\(\Rightarrow M=-1-1-1-1=-4\)
Xét \(a+b+c+d\ne0\)thì ta có:
\(\frac{2015a+b+c+d}{a}=\frac{a+2015b+c+d}{b}=\frac{a+b+2015c+d}{c}=\frac{a+b+c+2015d}{d}=\frac{2018\left(a+b+c+d\right)}{a+b+c+d}=2018\)
Lấy 2 cái đầu cộng với nhau ta được:
\(\frac{2016\left(a+b\right)+2\left(c+d\right)}{a+b}=2018\)
\(\Leftrightarrow\frac{c+d}{a+b}=\frac{2018-2016}{2}=1\)
Tương tự ta cũng có:
\(\frac{a+b}{c+d}=;\frac{b+c}{d+a}=1;\frac{d+a}{b+c}=1\)
\(\Rightarrow M=1+1+1+1=4\)
Ta có :
\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{d+a+b}=\frac{d}{a+b+c}\)
\(\Leftrightarrow\)\(\frac{a}{b+c+d}+1=\frac{b}{c+d+a}+1=\frac{c}{d+a+b}+1=\frac{d}{a+b+c}+1\)
\(\Leftrightarrow\)\(\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{c+d+a}=\frac{a+b+c+d}{d+a+b}=\frac{a+b+c+d}{a+b+c}\)
Ta thấy các tử bằng nhau suy ra các mẫu bằng nhau
\(\Rightarrow\)\(b+c+d=c+d+a=d+a+b=a+b+c\)
\(\Rightarrow\)\(a=b=c=d\)
\(\Rightarrow\)\(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{b+a}+\frac{d+a}{b+c}=1+1+1+1=4\)
Đề bị nhầm đúng ko bạn ^^
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
a) Ta có: \(\left(\frac{a+b}{c+d}\right)^3=\left(\frac{bk+b}{dk+d}\right)^3=\left[\frac{b.\left(k+1\right)}{d.\left(k+1\right)}\right]^3=\left(\frac{b}{d}\right)^3\) (1)
\(\frac{a^3-b^3}{c^3-d^3}=\frac{\left(bk\right)^3-b^3}{\left(dk\right)^3-d^3}=\frac{b^3.k^3-b^3}{d^3.k^3-d^3}=\frac{b^3.\left(k^3-1\right)}{d^3.\left(k^3-1\right)}=\frac{b^3}{d^3}=\left(\frac{b}{d}\right)^3\) (2)
Từ (1) và (2) suy ra \(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\)
b) Ta có:
\(\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\) (1)
\(\frac{2015a^2+2016c^2}{2015b^2+2016d^2}=\frac{2015.\left(bk\right)^2+2016.\left(dk\right)^2}{2015b^2+2016d^2}=\frac{2015.b^2.k^2+2016.d^2.k^2}{2015.b^2+2016.d^2}=\frac{k^2.\left(2015.b^2+2016d^2\right)}{2015b^2+2016d^2}=k^2\left(2\right)\) Từ (1) và (2) suy ra \(\frac{ac}{bd}=\frac{2015a^2+2016c^2}{2015b^2+2016d^2}\)
Để Cm được tỉ lệ thức trên thì ta phải Cm được
(a-2014c)*(b+2015d)=(a+2015c)*(b-2014d)
<=>ab+2015da-2014cb-2015d*2014c=ab-2014da+2015cb-2014d*2015c
<=>2015da-2014cb=-2014da+2015cb
<=>2015da+2014da=2015cb+2014cb
<=>4029da=4029cb
<=>da=cb
Mà a/b=c/d=>ad=cb
=>ta có điều phải chứng minh
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\) =\(\frac{a+b+c+d}{b+c+d+a+c+d+a+b+d+a+b+c}\)
Vì a+b+c+d khác 0
=> b+c+d=a+c+d=a+b+d=a+b+c
=>a=b=c=d
Khi đó:
a + b = c+d
b+c= (a+d)
c+d=a+b
d+a=b+c
=>\(\frac{a+b}{c+d}=\frac{b+c}{a+d}=\frac{c+d}{a+b}=\frac{d+a}{b+c}=1\)