\(a^2\)+\(b^2\)=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2021

a+b=c+d⇔(a+b)2=(c+d)2⇔a2+b2+2ab=c2+d2+2cd⇔ab=cd⇔−2ab=−2cd⇔(a−b)2=(c−d)2⇔a−b=|c−d|⇔a=c∨a=d→Q.E.Da+b=c+d⇔(a+b)2=(c+d)2⇔a2+b2+2ab=c2+d2+2cd⇔ab=cd⇔−2ab=−2cd⇔(a−b)2=(c−d)2⇔a−b=|c−d|⇔a=c∨a=d→Q.E.D

8 tháng 8 2016

Vì a+b=c+d;\(a^2+b^2=c^2+d^2\)nên:\(a^{2013}+b^{2013}=\left(a+b\right)^{2013}\)và \(c^{2013}+d^{2013}=\left(c+d\right)^{2013}\)vậy

\(\left(a+b\right)^{2013}=\left(c+d\right)^{2013}\).Đến đây ta thấy a+b=c+d nên chắc chắn \(a^{2013}+b^{2013}=c^{2013}+d^{2013}\)

8 tháng 8 2016

ai có thể giải thích cho mk hiểu tại sao a2013+b2013=(a+b)2013 đc ko

5 tháng 1 2019

\(a+b=c+d\)

\(\Rightarrow\left(a+b\right)^2=\left(c+d\right)^2\)

\(\Rightarrow a^2+2ab+b^2=c^2+2cd+d^2\)

Vì \(a^2+b^2=c^2+d^2\) (đề bài)

Nên \(2ab=2cd\)

Tương tự do 2ab = 2cd rồi nên

 \(a^2-2ab+b^2=c^2-2cd+d^2\)

\(\Rightarrow\left(a-b\right)^2=\left(c-d\right)^2\)

Nếu \(c-d=a-b\)

Và \(c+d=a+b\) (đề bài) (1)

CỘng vế theo vế ta được: \(2c=2a\)

Suy ra: a = c (2)

(1)(2) => b = d

Vậy \(a^{2013}+b^{2013}=c^{2013}+d^{2013}\) (*)

Nếu \(c-d=b-a\)

       \(c+d=a+b\)

Ta cũng cộng vế theo vế \(\Rightarrow2c=2b\)

=> b = c

=> a = d

\(\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}\) (2*)

Kết hợp (*) và (2*) ta được điều phải chứng minh

16 tháng 10 2015

a+b=c+d

(a+b)2=(c+d)2

a2+2ab+b2=c2+2cd+d2

ma a2+b2=c2+d2

2ab=2cd nen -2ab=-2cd

a2+b2=c2+d2

a2-2ab+b2=c2-2cd+d2

(a-b)2=(c-d)2

a-b=c-d hoac a-b=d-c

ma a+b=c+d

nen a=c hoac a=d

nen a=c;b=d hoac a=d;b=c

nen a2013=c2013;b2013=d2013 hoac a2013=d2013;b2013=c2013

Vay a2013+b2013=c2013+d2013 trong ca 2 truong hop

QUA DE

27 tháng 1 2020

\(\left(\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}\right)+\left(\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}\right)+\left(\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}\right)=0\)

\(\Leftrightarrow x^2\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2}\right)+y^2\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2}\right)+z^2\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2}\right)=0\left(1\right)\)

Vì: \(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2}>0\)

Và: \(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2}>0\)

Và: \(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2}>0\)

Nên từ \(\left(1\right)\Rightarrow x=y=z=0\)

\(\Rightarrow D=0\)

8 tháng 3 2019

a/ \(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\)

\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{\left(x^4+y^4\right)\left(x^4-y^4\right)}=4\)

\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4x^4y^4-4y^8+8y^8}{\left(x^4+y^4\right)\left(x^4-y^4\right)}=4\)

\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4x^4y^4+4y^8}{\left(x^4+y^4\right)\left(x^4-y^4\right)}=4\)

\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4-y^4}=4\)

.............................................................................

\(\Leftrightarrow\frac{y}{x-y}=4\)

\(\Leftrightarrow5y=4x\)

8 tháng 3 2019

b/ Ta có:

\(a-b=a^3+b^3>0\)

Ta lại có:

\(a^2+b^2< a^2+b^2+ab\)

Ta chứng minh

\(a^2+b^2+ab< 1\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab\right)< a-b=a^3+b^3\)

\(\Leftrightarrow a^3-b^3< a^3+b^3\)

\(\Leftrightarrow b^3>0\) (đúng)

Vậy ta có điều phải chứng minh

31 tháng 7 2016

\(a^2+b^2+c^2+d^2=a\left(b+c+d\right)\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2=4a\left(b+c+d\right)\)

\(\Leftrightarrow a^2-4ab+4b^2+a^2-4ac+4c^2+a^2-4ad+4d^2=0\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2=0\)

\(\Leftrightarrow a=2b=2c=2d\)

=>A=\(a+\frac{a}{2}+\frac{a}{2}+\frac{a}{2}=\frac{5a}{2}\)

31 tháng 7 2016

hàng 3 sử giúp mik hic hic

\(\Leftrightarrow a^2-4ab+4b^2+a^2-4ac+4c^2+a^2-4ad+4d^2+a^2=0\)

<=>(a-2b)2+(a-2c)2+(a-2d)2+a2=0

<=>a=2b=2c=2d=0

=>a=b=c=d=0

=>A=0+0+0+0=0

29 tháng 7 2016

k ai help tui hixxxxx..

15 tháng 5 2018

Không mất tính tổng quát,

Giả sử a<b 

Ta có: ab=bc => c<b 

Ta có: bc=cd => c<d 

Ta có: cd=de => e<d 

Ta có: de=ea => a>e 

Ta có: ea=ab => a>b ( trái với giả sử) 

Vậy a=b=c=d=e 

=> ba=bc=cd=de=ea 

               e<a