K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có:

ab=c+d

abcd=0

⇒2a(abcd)=0

⇒2a2−2ab−2ac−2ad=0

Do đó:

a2+b2+c2+d2

=a2+b2+c2+d2+2a2−2ab−2ac−2ad

=(a2−2ab+b2)+(a2−2ac+c2)+(a2−2ad+d2)

=(ab)2+(ac)2+(ad)2

Vậy với các số nguyên a, b, c, d thỏa mãn a - b = c + d thì a2 + b2 + c2 + d2 luôn là tổng của ba số chính phương

b) Ta có:

a+b+c+d=0

a+b+c=−d

a2+ab+ac=−da

bcda=a2+ab+ac+bc

bcda=a(a+b)+c(a+b)

bcda=(a+b)(a+c)(1)

Ta lại có:

a+b+c+d=0

a+b+c=−d

ac+bc+c2=−dc

abcd=ac+bc+c2+ab

abcd=c(a+c)+b(a+c)

abcd=(a+c)(b+c)(2)

Ta lại có:

a+b+c+d=0

a+b+c=−d

ab+b2+bc=−db

cadb=ca+ab+b2+bc

cadb=a(b+c)+b(b+c)

cadb=(b+c)(a+b)(3)

Thay (1) , (2) và (3) vào biểu thức ( ab - cd )( bc - da )( ca - db ) ta được:

(abcd)(bcda)(cadb)

=(a+c)(b+c)(a+b)(a+c)(a+b)(b+c)

=(a+c)2.(b+c)2.(a+b)2

=[(a+c)(b+c)(a+b)]2

Vậy với các số nguyên a, b, c, d thỏa mãn a + b + c + d = 0 thì ( ab - cd )( bc - da )( ca - db ) là số chính phương

5 tháng 4 2019

Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)

\(\Leftrightarrow2018ad< 2018bc\)

\(\Leftrightarrow2018ad+cd< 2018bc+cd\)

\(\Leftrightarrow d\left(2018a+c\right)< c\left(2018b+d\right)\)

\(\Leftrightarrow\frac{2018a+c}{2018b+d}< \frac{c}{d}\left(đpcm\right)\)

15 tháng 4 2019

ta có a/b < c/d 

=> ad<bc 

=> 2018ad < 2018bc

=> 2018ad + cd < 2018bc + cd 

=> ( 2018 a + c ) < c ( 2018 b + d )

=> \(\frac{2018a+c}{2018b+d}< \frac{c}{d}\left(\text{đ}pcm\right)\)

17 tháng 3 2019

ai giup minh di

5 tháng 4 2019

mk ko bt

23 tháng 2 2017

Vì \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}.bd< \frac{c}{d}.bd\)

\(\Rightarrow ad< bc\)

\(\Rightarrow2002ad< 2002bc\)

\(\Rightarrow2002ad+cd< 2002bc+cd\)

\(\Rightarrow\left(2002a+c\right).d< \left(2002b+d\right).c\)

Chia cả hai vế cho \(\left(2002b+d\right).d\) ta có :

\(\frac{2002a+c}{2002b+d}< \frac{c}{d}\)

Vậy...

23 tháng 2 2017

Vì \(\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow ad< bc\)

\(\Rightarrow2002ad< 2002bc\)

\(\Rightarrow2002ad+cd< 2002bc+cd\)

\(\Rightarrow\left(2002a+c\right)d< \left(2002b+d\right)c\)

\(\Rightarrow\frac{2002a+c}{2002b+d}< \frac{c}{d}\)

Mình chắc chắn 100% luôn. Mong các bạn .

Có \(\frac{a}{b}< \frac{c}{d}=>a.d< c.b\)

<=>2018a.d<2018c.b

<=>2018a.d+c.d<2018c.b+c.d

<=>d(2018a+c)<c(2018b+d)

<=>đpcm

10 tháng 4 2019

\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)

\(\Leftrightarrow2019ad< 2019bc\)

\(\Leftrightarrow2019ad+cd< 2019bc+cd\)

\(\Leftrightarrow d\left(2019a+c\right)< c\left(2019b+d\right)\)

\(\Leftrightarrow\frac{2019a+c}{2019b+d}< \frac{c}{d}\)

2 tháng 5 2015

Vì \(\frac{a}{b}<\frac{c}{d}\) nên ad < bc 

Quy đồng mẫu số 2 phân số \(\frac{2014a+c}{2014b+d}\)\(\frac{c}{d}\)

 \(\frac{2014a+c}{2014b+d}=\frac{d\left(2014a+c\right)}{d\left(2014b+d\right)}=\frac{2014ad+cd}{2014bd+d^2}\) 

\(\frac{c}{d}=\frac{\left(2014b+d\right)c}{\left(2014b+d\right)d}=\frac{2014bc+cd}{2014bd+d^2}\)

Vì ad < bc nên 2014ad + cd < 2014bc + cd => \(\frac{2014a+c}{2014b+d}<\frac{c}{d}\)(đpcm)

 

 

5 tháng 9 2019

Vì \(a< b< c< d< m< n\)

\(\Rightarrow\hept{\begin{cases}a+c+m< 3a\\a+b+c+d+m+n< 6a\end{cases}}\)

\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{3a}{6a}\)

\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\left(đpcm\right)\)

5 tháng 9 2019

                                                             Bài giải

Ta có : \(a< b\text{ }\Rightarrow\text{ }2a< a+b\)

        \(c< d\text{ }\Rightarrow\text{ }2c< c+d\)

         \(m< n\text{ }\Rightarrow\text{ }2m< m+n\)

\(\Rightarrow\text{ }2a+2c+2m< \left(a+b+c+d+m+n\right)\) \(\Leftrightarrow\text{ }2\left(a+c+m\right)< \left(a+b+c+d+m+n\right)\)

\(\Rightarrow\text{ }\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)