K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHD vuông tại H và ΔBKC vuông tại K có 

AD=BC

\(\widehat{D}=\widehat{C}\)

Do đó: ΔAHD=ΔBKC

Suy ra: DH=CK

b: Ta có: DH=CK

nên DH+HK=CK+HK

hay DK=HC

5 tháng 10 2019

A B D H K C

Xét hình thang cân ABCD ( AB // CD )

\(\Rightarrow\hept{\begin{cases}\widehat{D}=\widehat{C}\\AD=BC\end{cases}\left(t/c\right)}\)

Xét \(\Delta ADH=\Delta BCK\)

\(\hept{\begin{cases}\widehat{AHD}=\widehat{BKC}\left(=90^o\right)\\AD=BC\left(cmt\right)\\\widehat{D}=\widehat{C}\left(cmt\right)\end{cases}}\)

\(\Rightarrow\Delta ADH=\Delta BCK\)  ( ch - gn )

\(\Rightarrow AH=BK\) ( 2 cạnh tương ứng )
 b) Vì \(\Delta ADH=\Delta BCK\left(cmt\right)\)

\(\Rightarrow DK=CK\) ( 2 cạnh tương ứng )

Chúc bạn học tốt !!!

3 tháng 9 2016

Xét ΔAHD và ΔBKC có:

\(\widehat{AHD}=\widehat{AKC}=90\left(gt\right)\)

AD=BC(gt)

\(\widehat{D}=\widehat{C}\left(gt\right)\)

=>ΔAHD=ΔBKC (cạnh huyền-góc nhọn)

=>DH=CK

2. Cho hình thang cân ABCD (AB // CD) cóA D = 3. Tính các góc của hình thang cân.3. Cho hình thang cân ABCD (AB // CD) có AH và BK là hai đường cao của hình thang.a) Chứng minh DH = .2CD AB −b) Biết AB = 6 cm, CD = 14 cm, AD = 5 cm, tính DH, AH và diện tích hình thang cânABCD.4. Cho hình thang cân ABCD (AB//CD) có0 A B = = 60, AB = 4,5cm; AD = BC = 2 cm. Tínhđộ dài đáy CD và diện tích hình thang cân ABCD.5. Cho tam giác ABC cân tại A có BD...
Đọc tiếp

2. Cho hình thang cân ABCD (AB // CD) có
A D = 3
. Tính các góc của hình thang cân.
3. Cho hình thang cân ABCD (AB // CD) có AH và BK là hai đường cao của hình thang.
a) Chứng minh DH = .
2
CD AB −

b) Biết AB = 6 cm, CD = 14 cm, AD = 5 cm, tính DH, AH và diện tích hình thang cân
ABCD.
4. Cho hình thang cân ABCD (AB//CD) có

0 A B = = 60

, AB = 4,5cm; AD = BC = 2 cm. Tính

độ dài đáy CD và diện tích hình thang cân ABCD.
5. Cho tam giác ABC cân tại A có BD và CE là hai đường trung tuyến của tam giác.
Chứng minh BCDE là hình thang cân.
6. Cho tam giác ABC cân tại A có BH và CK là hai đường cao của tam giác. Chứng minh
BCHK là hình thang cân.
7. Cho tam giác ABC cân tại A, có M là trung điểm của BC. Kẻ tií Mx song song với AC cắt AB
tại E và tia My song song với AB cắt AC tại F. Chứng minh:
a) EF là đường trung bình của tam giác ABC;
b) AM là đường trung trực của EF.
8. Cho tam giác ABC, có AM là trung tuyến ứng với BC. Trên cạnh AB lấy điểm D và E sao cho
AD = DE = EB. Đoạn CD cắt AM tại I. Chứng minh:
a) EM song song vói DC;
b) I là trung điểm của AM;

Giúp em với ạ

 

2

Bài 8:

a: Xét ΔDBC có 

E là trung điểm của BD

M là trung điểm của BC

Do đó: EM là đường trung bình của ΔDBC

Suy ra: EM//DC

b: Xét ΔAEM có

D là trung điểm của AE

DI//EM

Do đó: I là trung điểm của AM

Bài 5: 

Xét ΔABC có 

\(\dfrac{AE}{EB}=\dfrac{AD}{DC}\left(=1\right)\)

Do đó: DE//BC

Xét tứ giác BEDC có DE//BC

nên BEDC là hình thang

mà \(\widehat{EBC}=\widehat{DCB}\)

nên BEDC là hình thang cân

4 tháng 8 2018

Xét tam giác bằng nhau là ra

24 tháng 6 2016

Xét tam giác AHD vuông tại H và tam giác BKC vuông tại K

Ta có: AD= BC (gt)

          Góc D = góc C

=> tam giác AHD= tam giác BKC (cạnh huyền- góc nhọn)

=> DH= CK ( 2 cạnh tương ứng)

xét tam giác AHD và tam giác BKC có:

            AD = BC (gt)

              góc ADH = góc BCK (gt)

                   góc AHD = góc AKC = 900

=> tam giác ... = tam giác .... (ch-gn)

=> DH = CK (cạnh tương ứng)

t i c k nha!! 463745768658897697696789768568654

29 tháng 6 2017

Hình thang cân

16 tháng 6 2019

A B D C H K

Có hình thang ABCD cân

⇒AD=BC ; ∠ADC=∠BCD

Có AH⊥DC

⇒∠AHD=∠AHC

Có BK⊥DC

⇒∠BKC=∠BKD

* Xét △AHD(∠AHD=90) và ΔBKC(∠BKC=90) có

AD=BC(c/m trên)

∠ADH=∠BCK

⇒△AHD=ΔBKC( cạnh huyền-góc nhọn)

⇒DH=KC(2 cạnh tương ứng)(đpcm)