Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có AD = BD và D ∈ AB nên D là trung điểm của AB;
AE = EC và E ∈ AC nên E là trung điểm của AC.
Xét tam giác ABC có D, E lần lượt là trung điểm của AB và AC, theo định lí Thalès đảo, ta suy ra DE // BC (đpcm).
Dựa vào tính chất đường phân giác trong tam giác với tam giác ABC có AD là phân giác của góc \(\widehat{BAC}\) , ta được: \(\dfrac{DB}{DC}=\dfrac{AB}{AC}\).
Ta có \(\widehat A = \widehat {{D_1}}\) mà hai góc này ở vị trí đồng vị nên AB // CD.
Suy ra tứ giác ABCD là hình thang.
Mặt khác hình thang ABCD có \(\widehat A = \widehat B\) nên ABCD là hình thang cân.
Do đó AD = BC (đpcm).
a) Vì ABCD là hình thang cân (AB // CD) nên \(\widehat {BAI} = \widehat {AIH}\)(hai góc so le trong).
Ta có AH ⊥ DC, BI ⊥ DC suy ra AH // BI.
Do đó \(\widehat {AIB} = \widehat {HAI}\) (hai góc so le trong).
Xét ∆AHI và ∆IBA có:
\(\widehat {BAI} = \widehat {AIH}\) (chứng minh trên);
Cạnh AI chung;
\(\widehat {AIB} = \widehat {HAI}\) (hai góc so le trong).
Do đó ∆AHI = ∆IBA (c.g.c).
Suy ra AH = BI (hai cạnh tương ứng).
b) Vì ABCD là hình thang cân (AC // CD) nên \(\widehat C = \widehat D\).
Vì ∆AHD và ∆BIC có:
\(\widehat {AH{\rm{D}}} = \widehat {BIC} = {90^o}\) và \(\widehat C = \widehat D\) nên \(90^o - \widehat C = 90^o - \widehat {BIC} \Leftrightarrow \widehat {DAH} = \widehat {CBI}\)
Xét ∆AHD và ∆BIC có:
\(\widehat {AH{\rm{D}}} = \widehat {BIC} = {90^o}\) (vì AH ⊥ DC, BI ⊥ DC, H ∈ CD, I ∈ CD);
\(AH = BI\) (chứng minh trên
\(\widehat {DAH} = \widehat {CBI}\) (chứng minh trên).
Do đó ∆AHD = ∆BIC (góc - cạnh - góc).
Suy ra AD = BC (hai cạnh tương ứng).
* Xét tam giác ABD cân tại A (vì AB = AD) ta có:
• \(\widehat {AB{\rm{D}}} = \widehat {A{\rm{D}}B} = {40^o}\)
• \(\widehat A + \widehat {AB{\rm{D}}} + \widehat {A{\rm{D}}B} = {180^o}\)
Suy ra \(\widehat A\)=180°−\(\widehat {AB{\rm{D}}}\)−\(\widehat {A{\rm{D}}B}\)=180°−40°−40°=100°
Ta có \(\widehat {A{\rm{D}}B} + \widehat {B{\rm{D}}C}\)=120° suy ra \(\widehat {B{\rm{D}}C}\)=120°−\(\widehat {A{\rm{D}}B}\)=120°−40°=80°.
* Xét tam giác BCD cân tại C (vì BC = CD) ta có:
• \(\widehat {CB{\rm{D}}} = \widehat {C{\rm{D}}B}\)=80°
• \(\widehat C + \widehat {CB{\rm{D}}} + \widehat {C{\rm{D}}B}\)=180°
Suy ra \(\widehat C\)=180°−\(\widehat {CB{\rm{D}}} - \widehat {C{\rm{D}}B}\)=180°−80°−80°=20°
Ta có: \(\widehat {ABC} = \widehat {AB{\rm{D}}} + \widehat {CB{\rm{D}}}\)=40°+80°=120o
Vậy số đo các góc của tứ giác ABCD là \(\widehat A = {100^o};\widehat {ABC} = {120^o};\widehat C = {20^o}\)
a, Do ABCD là hình bình hành: AB = CD.
Do ABMN là hình bình hành: AB = MN
Suy ra: CD = MN = AB
b, Do ABCD là hình bình hành \( \Rightarrow \widehat {BCD} = \widehat {DAB}\)
Do ABMN là hình bình hành \( \Rightarrow \widehat {BMN} = \widehat {NAB}\)
\(\widehat {BCD} + \widehat {BMN} = \widehat {DAB} + \widehat {NAB} = \widehat {DAN}\)
a) Xét tam giác \(ABD\) và tam giác \(ACB\) có:
\(\widehat {ABD} = \widehat {ACB}\) (giả thuyết)
\(\widehat A\) chung
Suy ra, \(\Delta ABD\backsim\Delta ACB\) (g.g)
b) Vì \(\Delta ABD\backsim\Delta ACB\)
Suy ra, \(\frac{{AB}}{{AC}} = \frac{{AD}}{{AB}}\) (các cặp cạnh tương ứng có cùng tỉ lệ).
Suy ra, \(A{B^2} = AC.AD = 9.4 = 36 \Rightarrow AB = \sqrt {36} = 6\)
Vậy \(AB = 6cm.\)
a)
Xét tam giác ABC có MN//BC
`=>(AM)/MB=(AN)/(NC)` (định lí thales)
`=>(6,5)/x=4/2`
`=>x=3,25`
b)
có QH⊥PH (hình vẽ)
FE⊥PH (hình vẽ)
Suy ra EF//HQ (từ vuông góc đến song song)
Xét tam giác PHQ có EF//HQ (cmt)
`=>(PE)/(PH)=(PF)/(PQ)` (định lí thales)
`=>4/x=5/(5+3,5)`
`=>4/x=5/(8,5)`
`=>x=6,8`
a) Vì \(ABCD\) là hình chữ nhật (gt)
Suy ra \(AB = CD\); \(AD = BC\), \(\widehat {DAB} = \widehat {ABC} = \widehat {DCB} = \widehat {ADC} = 90^\circ \)
Xét \(\Delta ABC\) và \(\Delta CDA\) ta có:
\(AB = CD\) (gt)
\(\widehat {{\rm{ABC}}} = \widehat {{\rm{ADC}}}\) (cmt)
\(BC = AD\) (gt)
Suy ra \(\Delta ABC = \Delta CDA\) (c-g-c)
Suy ra \(\widehat {{\rm{BAC}}} = \widehat {{\rm{ACD}}}\) và \(\widehat {{\rm{ACB}}} = \widehat {{\rm{CAD}}}\) (hai cạnh tương ứng)
Mà hai góc ở vị trí so le trong
Suy ra \(AB\) // \(CD\); \(BC\) // \(AD\)
b) Xét \(\Delta ABD\) và \(\Delta BAC\) ta có:
\(AB\) chung
\(\widehat {{\rm{BAD}}} = \widehat {{\rm{ABC}}}\) (cmt)
\(AD = BC\) (cmt)
Suy ra \(\Delta ABD = \Delta BAC\) (c-g-c)