Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I(3;1) (C) A(2;2) H B C d
Ta thấy \(AI^2=2< R^2\)=> A nằm trong đường tròn (C)
Gọi BC là một dây cung bất kì đi qua A, H là trung điểm BC
Ta có \(BC^2=4HB^2=4\left(R^2-HI^2\right)\ge4\left(R^2-AI^2\right)=4\left(9-2\right)=28\)(không đổi)
Vậy độ dài nhỏ nhất của dây BC bằng \(2\sqrt{7}\), đạt được khi d vuông góc với IA
Đường thẳng d: đi qua \(A\left(2;2\right)\), VTPT \(\overrightarrow{AI}=\left(1;-1\right)\Rightarrow d:x-y=0\)
Số phần tử của tập hợp A = { k2 + 1 | k εℤ, |k| \(\le\)2} là:
A. 1
B. 2
C. 3
D. 5
Ta có: \(\frac{a}{b}\)<\(\frac{c}{d}\)-->ad<bc (b,d>0)
Gỉa sử \(\frac{a}{b}\)<\(\frac{ab+cd}{b^2+d^2}\) đúng
a (b2+d2)<b(ab+cd) (b,d>0)
<=> ab2+ad2<ab2+bcd
<=> ad2-bcd<0
<=> d(ad-bc)<0 (*)
mà d>0; ad<bc(cmt)--> ad-bc<0
nên (*) đúng.
cm tiếp vế kia cũng như thế rồi kết luận
Lời giải:
Đặt \(A=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)
Ta có \(A=(a-\frac{ab^2}{1+b^2})+(b-\frac{bc^2}{1+c^2})+(c-\frac{ca^2}{1+a^2})=3-\left ( \frac{ab^2}{1+b^2}+\frac{bc^2}{1+c^2}+\frac{ca^2}{1+a^2} \right )\)
Áp dụng bất đẳng thức AM-GM:
\(A\geq 3-\left ( \frac{ab^2}{2b}+\frac{bc^2}{2c}+\frac{ca^2}{3a} \right )=3-\frac{1}{2}(ab+bc+ac)\)
Cũng theo AM-GM
\(9=(a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow ab+bc+ac\leq 3\)
\(\Rightarrow A\geq 3-\frac{3}{2}=\frac{3}{2}\)
Dấu $=$ xảy ra khi \(a=b=c=1\)
Bài 1. Ta có: \(a\left(a+2\right)\left(a-1\right)^2\ge0\therefore\frac{1}{4a^2-2a+1}\ge\frac{1}{a^4+a^2+1}\)
Thiết lập tương tự 2 BĐT còn lại và cộng theo vế rồi dùng Vasc (https://olm.vn/hoi-dap/detail/255345443802.html)
Bài 5: Bất đẳng thức này đúng với mọi a, b, c là các số thực. Chứng minh:
Quy đồng và chú ý các mẫu thức đều không âm, ta cần chứng minh:
\(\frac{1}{2}\left(a^2+b^2+c^2-ab-bc-ca\right)\Sigma\left[\left(a^2+b^2\right)+2c^2\right]\left(a-b\right)^2\ge0\)
Đây là điều hiển nhiên.
lỗi rồi bạn nhé