Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Có 4 số a,b,c,d và 3 số dư có thể xảy ra khi chia một số cho 3 là 0,1,2
Do đó áp dụng nguyên lý Dirichlet tồn tại ít nhất [\(\frac{4}{3}\)]+1=2số có cùng số dư khi chia cho 3
Không mất tổng quát giả sử đó là a,b⇒a−b⋮3
⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮3
Mặt khác
Trong 4 số a,b,c,da,b,c,d
Giả sử tồn tại hai số có cùng số dư khi chia cho 4 là a,b
⇒a−b⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)\(⋮\)4
Nếu a,b,c,d không có số nào có cùng số dư khi chia cho 4. Khi đó giả sử a,b,c,d có số dư khi chia cho 4 lần lượt là 0,1,2,3
⇒c−a⋮2; d−b⋮2
⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4
Như vậy, tích đã cho vừa chia hết cho 3 vừa chia hết cho 4. Do đó nó cũng chia hết cho 12
Ta có đpcm,
Theo nguyên lí Dirichlet, chắc chắn phải có 2 số cùng dư khi chia cho 3
=> tích chia hết cho 3
Nếu có 2 số cùng số dư khi chia cho 4 thì tích chia hết cho 4
Nếu ko có 2 số nào cùng dư thì các số dư là 0,1,2,3 => có 2 số lẻ và 2 số chẵn
Hiệu của 2 số lẻ nhân với hiệu của 2 số chẵn chia hết cho 4 ( vì mỗi hiệu chia hết cho 2) => Tích chia hết cho 4 trong mọi a,b,c,d
Vì (3;4)=1 nên tích chia hết cho 3.4=12
Có \(P\left(x\right)⋮5\)với mọi x
=> \(P\left(0\right)=d⋮5\)
\(P\left(1\right)=a+b+c+d⋮5\)
\(P\left(-1\right)=-a+b-c+d⋮5\)
\(P\left(2\right)=8a+4b+2c+d⋮5\)
\(P\left(-2\right)=-8a+4b-2c+d\)
=> \(a+b+c⋮5\)và \(-a+b-c⋮5\)
=> \(a+b+c+\left(-a+b-c\right)⋮5\)
=> \(2b⋮5\)
Mà 2 là SNT và b nguyên
=> \(b⋮5\)
=> \(a+c⋮5\); \(-a-c⋮5\); \(8a+2c⋮5\); \(-8a-2c⋮5\)
=> \(2\left(a+c\right)⋮5\)
=> \(2a+2c⋮5\)
=> \(2a+2c+\left(-8a-2c\right)⋮5\)
=> \(-6a⋮5\)
mà 6 không chia hết cho 5
=> \(a⋮5\)
=> \(b⋮5\)
quá đơn giản với BỐ
đặt A=(b-a)(c-a)(c-b)(d-b)(c-d)
Trong 4 số a,b,c,d luôn có 2 số chia cho 3 có cùng số dư,do đó hiệu của chúng chia hết cho 3 hay A chia hết cho 3 (1)
Mặt khác: Trong a,b,c,d hoặc phải có 2 số chẵn,2 số lẻ
Chẳng hạn: a,b chẵn;c,d lẻ <=>b-a và d-c chia hết cho 2 <=>(b-a)(d-c) chia hết cho 2.2=4
=>A chia hết cho 4
Hoặc nếu không như vậy thì trong 4 số a,b,c,d sẽ tồn tại 2 số chia cho 4 có cùng số dư nên hiệu của chúng chia hết cho 4 =>A chia hết cho 4 (2)
Từ (1) và (2),kết hợp với (3;4)=1
=>A chia hết cho 3.4=12
=>đpcm
13a + 3 = k² <=> 13a + 3 - 81 = k² - 81 <=> 13a - 78 = k²-9²
<=> 13(a-6) = (k-9)(k+9) (*)
do 13 là số nguyên tố nên từ (*) ta phải có k-9 hoặc k+9 chia hết cho 13
=> k = 13n+9 hoặc k = 13n+4
có a = (k²-3)/13 ; từ trên thấy k không nhận giá trị 0, -1, +1 nên k²-3 > 0
Tóm lại các số tự nhiên a có dạng:
a = [(13n+9)² - 3]/13 hoặc a = [(13n+4)² - 3]/13 với n tùy ý thuộc Z