Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a^2+b^2+c^2+d^2\ge4\sqrt[4]{\left(abcd\right)^2}=4\)(AM-GM) (abcd=1)
Lại có: \(a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)\)
\(=ab+ac+bc+bd+cd+ac+ad+bd\)
\(\ge8\sqrt[8]{\left(abcd\right)^4}=8\)(AM-GM)
Từ đó:
\(a^2+b^2+c^2+d^2+a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)\ge4+8=12\)
=> ĐPCM. Dấu "=" xảy ra <=> a=b=c=d=1.
Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)
Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\); \(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)
Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)
\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)
Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)
Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*
\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)
\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)
Đẳng thức xảy ra khi a = b = c
P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:
1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)
\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)
bài 2 xem có ghi nhầm ko
Bài 1 :
Áp dụng bất đẳng thức Cauchy ta có :
\(\frac{\left(x-1\right)^2}{z}+\frac{z}{4}\ge2\sqrt{\frac{\left(x-1\right)^2}{z}\frac{z}{4}}=\left|x-1\right|=1-x\)
\(\frac{\left(y-1\right)^2}{x}+\frac{x}{4}\ge2\sqrt{\frac{\left(y-1\right)^2}{x}\frac{x}{4}}=\left|y-1\right|=1-y\)
\(\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge2\sqrt{\frac{\left(z-1\right)^2}{y}\frac{y}{4}}=\left|z-1\right|=1-z\)
\(\Rightarrow\frac{\left(x-1\right)^2}{z}+\frac{z}{4}+\frac{\left(y-1\right)^2}{x}+\frac{x}{4}+\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge1-x+1-y+1-z\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}\ge3-\left(x+y+z\right)-\frac{x+y+z}{4}=3-2-\frac{2}{4}=\frac{1}{2}\)
Vậy GTNN của \(A=\frac{1}{2}\Leftrightarrow x=y=z=\frac{2}{3}\)
\(\sqrt{2012}=\left(abc+bcd-a-d\right)+\left(cda+dab-c-b\right)\)
\(=\left(bc-1\right)\left(a+d\right)+\left(c+b\right)\left(ad-1\right)\)
\(\Rightarrow2012=\left[\left(bc-1\right)\left(a+d\right)+\left(c+b\right)\left(ad-1\right)\right]^2\)
\(\le\left[\left(bc-1\right)^2+\left(c+b\right)^2\right]\left[\left(a+d\right)^2+\left(ad-1\right)^2\right]\)
\(=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\left(d^2+1\right)\)
\(a^4+b^4+\left(a+b\right)^2=\left(a^2+b^2\right)^2-2a^2b^2+\left(a^2+b^2+2ab\right)^2\)
\(=\left(a^2+b^2\right)-2a^2b^2+\left(a^2+b^2\right)+4ab\left(a^2+b^2\right)+4a^2b^2\)
\(=2\left[\left(a^2+b^2\right)^2+2ab\left(a^2+b^2\right)+a^2b^2\right]\)
\(=2\left(a^2+b^2+ab\right)^2\)
Tương tự: \(x^4+y^4+\left(x+y\right)^4=2\left(x^2+y^2+xy\right)^2\)
Mà \(a^2+b^2+\left(a+b\right)^2=x^2+y^2+\left(x+y\right)^2\Rightarrow2\left(a^2+b^2+ab\right)=2\left(x^2+y^2+xy\right)\)
\(\Rightarrow2\left(a^2+b^2+ab\right)^2=2\left(x^2+y^2+xy\right)^2\)
hay \(a^4+b^4+\left(a+b\right)^4=x^4+y^4+\left(x+y\right)^4\)
ta có \(a+b+c+\sqrt{abc}=4\Rightarrow4a+4b+4a+4\sqrt{abc}\)
=> \(4a+4\sqrt{abc}=16-4b-4c\Leftrightarrow4a+4\sqrt{abc}+bc=16-4b-4c+bc\)
=> \(\left(2\sqrt{a}+\sqrt{bc}\right)^2=\left(4-b\right)\left(4-c\right)\Rightarrow a\left(4-b\right)\left(4-c\right)=a\left(2\sqrt{a}+\sqrt{bc}\right)^2\)
=> \(\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a}\left(2\sqrt{a}+\sqrt{bc}\right)=2a+\sqrt{abc}\)
tương tự như thế thay vào , thì A=8
Ta có:
\(a+b+c+\sqrt{abc}=4\Rightarrow4a+4b+4c+4\sqrt{abc}\)
\(\Rightarrow4a+4\sqrt{abc}=16-4b-4c\Leftrightarrow4a+4\sqrt{abc}+bc=16-4b-4c+bc\)
\(\Rightarrow\left(2\sqrt{a}+\sqrt{bc}\right)^2=\left(4-b\right)\left(4-c\right)\Rightarrow a\left(4-b\right)\left(4-c\right)=a\left(2\sqrt{a}+\sqrt{bc}\right)^2\)
\(\Rightarrow\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a}\left(2\sqrt{a}+\sqrt{bc}\right)=2a+\sqrt{abc}\)
Tương tự như thế thay vào, thì A = 8
Nhận xét:Ghi nhớ tam giác Pascal cho bậc 4:\(1\rightarrow4\rightarrow6\rightarrow4\rightarrow1\)
cần cù bù thông minh :)
\(a^2+b^2+\left(a-b\right)^2=c^2+d^2+\left(c-d\right)^2\)
\(\Leftrightarrow a^2+b^2+a^2-2ab+b^2=c^2+d^2+c^2-2cd+d^2\)
\(\Leftrightarrow a^2-ab+b^2=c^2-cd+d^2\)
\(\Rightarrow\left(a^2-ab+b^2\right)^2=\left(c^2-cd+d^2\right)^2\) ( mạnh dạn bình phương )
\(\Leftrightarrow a^4+a^2b^2+b^4-2a^3b-2ab^3+2a^2b^2=c^4+c^2d^2+d^4-2c^3d-2cd^3+2c^2d^2\)
\(\Leftrightarrow a^4+3a^2b^2+b^4-2a^3b-2ab^3=c^4+3c^2d^2+d^4-2c^3d-2cd^3\left(1\right)\)
Mặt khác:
\(a^4+b^4+\left(a-b\right)^4\)
\(=a^4+b^4+a^4-4a^3b+6a^2b^2-4ab^3+b^4\)
\(=2\left(a^4-2a^3b-2ab^3+3a^2b^2\right)\left(2\right)\)
Tương tự:
\(c^4+d^4+\left(c-d\right)^4=2\left(c^4-2c^3d-2cd^3+3c^2d^2\right)\left(3\right)\)
Từ ( 1 );( 2 );( 3 ) suy ra đpcm