K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2016

Bài này có nhiều cách nên mình làm 1 cách thui nhé!!

Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{b}{a}=\frac{d}{c}\)

Ta có: \(\frac{a-b}{a}=\frac{a}{a}-\frac{b}{a}=1-\frac{b}{a}=1-\frac{d}{c}=\frac{c-d}{c}\)

Do đó: \(\frac{a-b}{a}=\frac{c-d}{c}\)

17 tháng 10 2016

Ta đăt : \(\frac{a}{b}=\frac{c}{d}=k\left(1\right)\Rightarrow a=bk;c=dk\)

Thay vào tỉ lệ thức lệ thức \(\frac{a-b}{a}\) và \(\frac{c-d}{c}\), ta có :

\(\frac{a-b}{a}=\frac{bk-b}{bk}=\frac{b\left(k-1\right)}{bk}=\frac{k-1}{k}\)           (2)

\(\frac{c-d}{c}=\frac{dk-d}{dk}=\frac{d\left(k-1\right)}{dk}=\frac{k-1}{k}\)          (3)

Từ (1), (2), (3) ta suy ra từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) với \(a,b,c,d\ne0\) ta có thể suy ra tỉ lệ thức \(\frac{a-b}{a}=\frac{c-d}{c}\).

25 tháng 12 2017

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{2017c-a-b}{c}=\frac{2017b-a-c}{b}=\frac{2017a-b-c}{a}=\frac{\left(2017c-a-b\right)+\left(2017b-a-c\right)+\left(2017a-b-c\right)}{a+b+c}=\frac{2015.\left(a+b+c\right)}{a+b+c}=2015\)

\(\frac{2017c-a-b}{c}=2015\)\(\Rightarrow2017c-a-b=2015c\)\(\Rightarrow2c=a+b\)( 1 )

\(\frac{2017b-a-c}{b}=2015\)\(\Rightarrow2017b-a-c=2015b\)\(\Rightarrow2b=a+c\)( 2 )

\(\frac{2017a-b-c}{a}=2015\)\(\Rightarrow2017a-b-c=2015a\)\(\Rightarrow2a=b+c\)( 3 )

Từ ( 1 ), ( 2 ) và ( 3 ) \(\Rightarrow a=b=c\)

Vậy A = \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(1+1\right).\left(1+1\right).\left(1+1\right)=2^3=8\)

DD
31 tháng 7 2021

\(\frac{a+b+c-2d}{a}=\frac{b+d+a-2c}{b}=\frac{b+d+c-2a}{c}=\frac{a+c+d-2b}{d}\)

\(=\frac{\left(a+b+c-2d\right)+\left(b+d+a-2c\right)+\left(b+d+c-2a\right)+\left(a+c+d-2b\right)}{a+b+c+d}\)

\(=\frac{a+b+c+d}{a+b+c+d}=1\)

\(\Leftrightarrow a=b=c=d\).

\(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{d}\right)\left(1+\frac{d}{a}\right)=2^4=16\)

9 tháng 10 2019

Từ \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\left(1\right)\)

\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\left(2\right)\)

\(d^2=ac\Rightarrow\frac{c}{d}=\frac{d}{a}\left(3\right)\)

Từ (1) (2) (3) \(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)

\(\Rightarrow a=b=c=d\)

Khi đó M = \(\frac{a}{b+c+d}+\frac{b}{a+c+d}=\frac{a}{3a}+\frac{a}{3a}=\frac{1}{3}+\frac{1}{3}=\frac{2}{3}\)

Vậy \(M=\frac{2}{3}\)

21 tháng 8 2016

\(\left(abc\right)^2=\left(\frac{3}{5}\right)^2\)

\(abc=\frac{3}{5}\)

c=1;a=3/4;b=4/5

10 tháng 4 2017

\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)

=> \(\dfrac{abc}{ac+bc}=\dfrac{abc}{ab+ac}=\dfrac{abc}{bc+ab}\)

=> ac + bc = ab + ac = bc + ab (do abc \(\ne0\))

=> ac + bc - ab - ac = 0

=> bc - ab = 0

=> b(c - a) = 0

Mà b \(\ne0\) nên c - a = 0 => c = a

Tương tự ta có: a = b

Từ đó có: a = b = c

Thay vào M được:

\(M=\dfrac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)