Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(P=(x+1)\left(1+\frac{1}{y}\right)+(y+1)\left(1+\frac{1}{x}\right)\)
\(=2+x+y+\frac{x}{y}+\frac{y}{x}+\frac{1}{x}+\frac{1}{y}\)
Áp dụng BĐT Cô-si:
\(\frac{x}{y}+\frac{y}{x}\geq 2\)
\(x+\frac{1}{2x}\geq 2\sqrt{\frac{1}{2}}=\sqrt{2}\)
\(y+\frac{1}{2y}\geq 2\sqrt{\frac{1}{2}}=\sqrt{2}\)
Áp dụng BĐT SVac-xơ kết hợp với Cô-si:
\(\frac{1}{2x}+\frac{1}{2y}\geq \frac{4}{2x+2y}=\frac{2}{x+y}\geq \frac{2}{\sqrt{2(x^2+y^2)}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)
Cộng các BĐT trên :
\(\Rightarrow P\geq 2+2+\sqrt{2}+\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)
Vậy \(P_{\min}=4+3\sqrt{2}\Leftrightarrow a=b=\frac{1}{\sqrt{2}}\)
Bài 2:
Áp dụng BĐT Svac-xơ:
\(\frac{1}{a+3b}+\frac{1}{b+a+2c}\geq \frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)
\(\frac{1}{b+3c}+\frac{1}{b+c+2a}\geq \frac{4}{2b+4c+2a}=\frac{2}{b+2c+a}\)
\(\frac{1}{c+3a}+\frac{1}{c+a+2b}\geq \frac{4}{2c+4a+2b}=\frac{2}{c+2a+b}\)
Cộng theo vế và rút gọn :
\(\Rightarrow \frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\geq \frac{1}{2a+b+c}+\frac{1}{2b+c+a}+\frac{1}{2c+a+b}\) (đpcm)
Dấu bằng xảy ra khi $a=b=c$
Search mạng trước khi đăng nhs bn!
Cho a,b,c,d >0 .CMR: a/(b+c) + b/(c+d) + c/(d+a) + d/( a+b)? | Yahoo Hỏi & Đáp
\(\left\{{}\begin{matrix}\dfrac{1}{a+2}=\dfrac{1}{2}-\dfrac{1}{b+2}+\dfrac{1}{2}-\dfrac{1}{c+2}=\dfrac{b}{2\left(b+2\right)}+\dfrac{c}{2\left(c+2\right)}\ge\sqrt{\dfrac{bc}{\left(b+2\right)\left(c+2\right)}}\\\dfrac{1}{b+2}\ge\sqrt{\dfrac{ca}{\left(c+2\right)\left(a+2\right)}}\\\dfrac{1}{c+2}\ge\sqrt{\dfrac{ab}{\left(a+2\right)\left(b+2\right)}}\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\ge\dfrac{abc}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)
\(\Leftrightarrow abc\le1< \dfrac{9}{8}\)
Đề sai !
Giả sử \(a=b=c=1\) thay vào phương trình đầu thì :
\(\dfrac{1}{1+2}+\dfrac{1}{1+2}+\dfrac{1}{1+2}=1\) ( Thỏa mãn )
Nhưng \(1.1.1< \dfrac{1}{8}\) ( vô lí )
\(A=\dfrac{a^3}{b+c+d}+\dfrac{b^3}{a+c+d}+\dfrac{c^3}{a+b+d}+\dfrac{d^3}{a+b+c}\)
\(=\dfrac{a^4}{ab+ac+ad}+\dfrac{b^4}{ab+bc+bd}+\dfrac{c^4}{ac+bc+cd}+\dfrac{d^4}{ad+bd+cd}\)
\(\ge\dfrac{\left(a^2+b^2+c^2+d^2\right)^2}{2\left(ab+ac+ad+bc+bd+cd\right)}\) (bđt Cauchy Shwarz dạng Engel)
Cần chứng minh \(\dfrac{a^2+b^2+c^2+d^2}{2\left(ab+ac+ad+bc+bd+cd\right)}\ge\dfrac{1}{3}\)
\(\Leftrightarrow3a^2+3b^2+3c^2+3d^2\ge2\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-d\right)^2+\left(b-c\right)^2+\left(c-d\right)^2\ge0\) *đúng*
Vậy ta có đpcm.
Dấu "=" xảy ra khi a = b = c = d
Bài 1:ta có BĐt \(a^3+b^3\ge ab\left(a+b\right)\)vì nó tương đương với \(\left(a+b\right)\left(a-b\right)^2\ge0\)(luôn đúng với a,b>0)
Áp dụng vào bài toán:
\(\dfrac{a^3+b^3}{2ab}+\dfrac{b^3+c^3}{2bc}+\dfrac{c^3+a^3}{2ac}\ge\dfrac{ab\left(a+b\right)}{2ab}+\dfrac{bc\left(b+c\right)}{2bc}+\dfrac{ca\left(c+a\right)}{2ac}=a+b+c\)dấu = xảy ra khi a=b=c
bài 2:
cần chứng minh \(\dfrac{a-b}{b+c}+\dfrac{b-c}{c+d}+\dfrac{c-d}{d+a}+\dfrac{d-a}{a+b}\ge0\)
hay \(\dfrac{a-b}{b+c}+1+\dfrac{b-c}{c+d}+1+\dfrac{c-d}{d+a}+1+\dfrac{d-a}{a+b}+1\ge4\)
\(\Leftrightarrow\dfrac{a+c}{b+c}+\dfrac{b+d}{c+d}+\dfrac{c+a}{d+a}+\dfrac{d+b}{a+b}\ge4\)
xét \(VT=\left(a+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{a+d}\right)+\left(b+d\right)\left(\dfrac{1}{c+d}+\dfrac{1}{a+b}\right)\)
Áp dụng BĐT cauchy dạng phân thức:
\(\dfrac{1}{b+c}+\dfrac{1}{a+d}\ge\dfrac{4}{a+b+c+d};\dfrac{1}{c+d}+\dfrac{1}{a+b}\ge\dfrac{4}{a+b+c+d}\)
do đó \(VT\ge\dfrac{4\left(a+c\right)}{a+b+c+d}+\dfrac{4\left(b+d\right)}{a+b+c+d}=4\)
dấu = xảy ra khi a=b=c=d
Bài 2:
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)
\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:
\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)
Thiết lập các BĐT tương tự:
\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)
Dấu "=" không xảy ra nên ta có ĐPCM
Lưu ý: lần sau đăng từng bài 1 thôi nhé !
1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:
\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)
TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)
\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)
Cộng vế với vế ta được:
\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)
Lời giải:
Ta thấy:
\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}+\frac{1}{d+1}=\frac{1}{a+1}+1-\frac{b}{b+1}+1-\frac{c}{c+1}+1-\frac{d}{d+1}\geq 3\)
\(\Rightarrow \frac{1}{a+1}\geq \frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\geq 3\sqrt[3]{\frac{bcd}{(b+1)(c+1)(d+1)}}\) (AM-GM)
Tương tự:
\(\frac{1}{b+1}\geq 3\sqrt[3]{\frac{acd}{(a+1)(c+1)(d+1)}}\)
\(\frac{1}{c+1}\geq 3\sqrt[3]{\frac{abd}{(a+1)(b+1)(d+1)}}\)
\(\frac{1}{d+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}\)
Nhân theo vế:
\(\Rightarrow \frac{1}{(a+1)(b+1)(c+1)(d+1)}\geq 81.\frac{abcd}{(a+1)(b+1)(c+1)(d+1)}\)
\(\Rightarrow abcd\leq \frac{1}{81}\)
đề sai rồi
Sửa đề: \(1< \dfrac{a}{a+b+c}+\dfrac{b}{a+b+d}+\dfrac{c}{a+c+d}+\dfrac{d}{b+c+d}< 2\)
Ta có : \(\dfrac{a}{a+b+c}>\dfrac{a}{a+b+c+d}\) (1)
\(\dfrac{b}{a+b+d}>\dfrac{b}{a+b+c+d}\) (2)
\(\dfrac{c}{a+c+d}>\dfrac{c}{a+b+c+d}\) (3)
\(\dfrac{d}{c+b+d}>\dfrac{d}{a+b+c+d}\) (4)
Từ (1)(2)(3)(4) =>\(\dfrac{a}{a+b+c}+\dfrac{b}{a+b+d}+\dfrac{c}{a+c+d}+\dfrac{d}{b+c+d}>\dfrac{a+b+c+d}{a+b+c+d}=1\)
Lại có:\(\dfrac{a}{a+b+c}< \dfrac{a+d}{a+b+c+d}\)(Vì a<a+b+c)
\(\dfrac{b}{a+b+d}< \dfrac{b+c}{a+b+c+d}\)(Vì b<a+b+d)
\(\dfrac{c}{a+c+d}< \dfrac{b+c}{a+b+c+d}\)(Vì c<c+a+d)
\(\dfrac{d}{b+c+d}< \dfrac{d+a}{a+b+c+d}\)(Vì d<d+b+c)
=>\(\dfrac{a}{a+b+c}+\dfrac{b}{a+b+d}+\dfrac{c}{a+c+d}+\dfrac{d}{b+c+d}< \dfrac{2\left(a+b+c+d\right)}{a+b+c+d}=2\\ \text{Vậy 1< ...< 2}\)