à abcd=1. CMR a2+ b2+c2+d...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2021

Ta có : \(a^2+b^2+c^2+d^2+a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)\)

\(a^2+b^2+c^2+d^2+ab+ac+bc+bd+dc+da\)

\(=\left(a^2+b^2+c^2+d^2\right)+\left(ab+ac+bc+bd+dc+da\right)\)

Áp dụng bất đẳng thức Cauchy ta có :

\(a^2+b^2+c^2+d^2\ge4\sqrt[4]{a^2b^2c^2d^2}=4\sqrt[4]{\left(abcd\right)^2}=4\sqrt[4]{1^2}=4\)(1)

\(ab+ac+bc+bd+dc+da\ge6\sqrt[6]{a^3b^3c^3d^3}=6\sqrt[6]{\left(abcd\right)^3}=6\sqrt[6]{1^3}=6\)(2)

Từ (1) và (2) => \(\left(a^2+b^2+c^2+d^2\right)+\left(ab+ac+bc+bd+dc+da\right)\ge4+6=10\)

hay \(a^2+b^2+c^2+d^2+a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)\ge10\)( đpcm )

Đẳng thức xảy ra <=> a = b = c = d = 1

25 tháng 2 2021

  Áp dụng bất đẳng thức cosi với 4 số a,b,c,d không âm 

          \(\frac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\)

      Mà \(abcd=1\)

       \(\Rightarrow\frac{a+b+c+d}{4}\ge1\)

        \(\Rightarrow a+b+c+d\ge4\)

  Có abcd=1

  => a2 . b2 . c2 . d2 = 1

   Áp dụng bất đẳng thức cosi với 4 số không âm a2, b2, c2, d2 có

         \(\frac{a^2+b^2+c^2+d^2}{4}\ge\sqrt[4]{a^2b^2c^2d^2}\)

      \(\Leftrightarrow\frac{a^2+b^2+c^2+d^2}{4}\ge1\)

       \(\Rightarrow a^2+b^2+c^2+d^2\ge4\)  ( 1 )

Ta có

         \(a+b+c+d\ge4\)  ( 2 )

  \(\Leftrightarrow\left(a+b+c+d\right)^2\ge16\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bc+2bd+2cd\ge16\)

            Cộng ( 1 ) và ( 2 ) ta có

   \(2\left(a^2+b^2+c^2+d^2+ab+ac+ad+bc+bd+cd\right)\ge20\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+ab+ac+bc+bd+ad+cd\ge10\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)\ge10\)  ( đpcm )

7 tháng 2 2019

Ta có : a2 + b2 \(\ge2ab\)

\(c^2+d^2\ge2cd\)

Do abcd = 1 nên cd =\(\dfrac{1}{ab}\)( dùng \(x+\dfrac{1}{x}\ge\dfrac{1}{2}\))

Ta có :\(a^2+b^2+c^2\ge2\left(ab+cd\right)=2\left(ab+\dfrac{1}{ab}\right)\ge4\)(1)

Mặt khác : a(b+c) +b(c+d)+d(c+a)

=(ab+cd)+(ac+bd)+(bc+ad)

=\(\left(ab+\dfrac{1}{ab}\right)+\left(ac+\dfrac{1}{ac}\right)+\left(bc+\dfrac{1}{bc}\right)\ge2+2+2\)

Vậy \(a^2+b^2+c^2+d^2+a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)\ge10\)


AH
Akai Haruma
Giáo viên
8 tháng 10 2017

Lời giải:

a) Ta có:

\(a^2-b^2+c^2\geq (a-b+c)^2\)

\(\Leftrightarrow a^2-b^2+c^2\geq a^2+b^2+c^2-2ab-2bc+2ac\)

\(\Leftrightarrow 2ab+2bc\geq 2b^2+2ac\)

\(\Leftrightarrow ab+bc\geq b^2+ac\Leftrightarrow b(a-b)+c(b-a)\geq 0\)

\(\Leftrightarrow (a-b)(b-c)\geq 0\)

BĐT trên luôn đúng do \(a\geq b\geq c\)

Do đó ta có đpcm.

b) \(a^2-b^2+c^2-d^2\geq (a-b+c-d)^2\)

\(\Leftrightarrow a^2-b^2+c^2-d^2\geq (a-b)^2+(c-d)^2+2(a-b)(c-d)\)

\(\Leftrightarrow a^2-b^2+c^2-d^2\geq a^2+b^2+c^2+d^2-2ab-2cd+2ac-2ad-2bc+2bd\)

\(\Leftrightarrow 2(ab+cd+ad+bc)\geq 2(b^2+d^2)+2ac+2bd\)

\(\Leftrightarrow ab+cd+ad+bc\geq b^2+d^2+ac+bd\)

\(\Leftrightarrow b(a-b)+d(c-d)+d(a-b)-c(a-b)\geq 0\)

\(\Leftrightarrow (a-b)(b+d-c)+d(c-d)\geq 0\)

BĐT trên luôn đúng do:

\(\left\{\begin{matrix} d\geq 0\\ a\geq b\rightarrow a-b\geq 0\\ c\geq d\rightarrow c-d\geq 0\\ b\geq d\rightarrow b+d-c\geq 0\end{matrix}\right.\Rightarrow (a-b)(b+d-c)+d(c-d)\geq 0\)

Do đó ta có đpcm.

25 tháng 9 2016

bài này hả chịu thui

bik làm sao dc 

để nhớ lại đã

25 tháng 9 2016

bn ơi bn viết

chữ nhỏ quá đó 

bn ấn vào chữ x2

à bn mình nhìn rõ

nhưng có chữ 

ko đọc được

8 tháng 10 2017

a) \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

(Luôn đúng)

Vậy ta có đpcm.

Đẳng thức khi \(a=b=c\)

b) \(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2b+1+a^2-2a+1\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0\)

(Luôn đúng)

Vậy ta có đpcm

Đẳng thức khi \(a=b=1\)

Các bài tiếp theo tương tự :v

g) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}=6abc\)

i) \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=\dfrac{2}{\sqrt{ab}}\)

Tương tự: \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)

Cộng vế theo vế rồi rút gọn cho 2, ta được đpcm

j) Tương tự bài i), áp dụng Cauchy, cộng vế theo vế rồi rút gọn được đpcm

18 tháng 10 2018

Giả thiết có: abc+bca+cda+dab = a+b+c+d+\(\sqrt{2012}\)

\(\Leftrightarrow\) (abc+bca+cda+dab-a-b-c-d)2 =2012

\(\Leftrightarrow\) \(\left[\left(abc-c\right)+\left(dab-d\right)+\left(bcd-b\right)+\left(cda-a\right)\right]^2\) = 2012

\(\Leftrightarrow\) \(\left[c\left(ab-1\right)+d\left(ab-1\right)+b\left(cd-1\right)+a\left(cd-1\right)\right]^2\) = 2012

\(\Leftrightarrow\) \(\left[\left(ab-1\right)\left(c+d\right)+\left(ab-1\right)\left(a+b\right)\right]^2\) = 2012

Áp dụng BĐT Bunhia cho 2 cặp số: (ab-1 ; a+b);(cd-1 ; c+d)

Ta có: \(\left[\left(ab-1\right)\left(c+d\right)+\left(ab-1\right)\left(a+b\right)\right]^2\) \(\le\) \(\left[\left(ab-1\right)^2+\left(a+b\right)^2\right]\left[\left(cd-1\right)^2+\left(c+d\right)^2\right]\)

\(\Leftrightarrow\) 2012 \(\le\) ( a2b2-2ab+1+a2+2ab+b2) (c2d2-2cd+1+c2+2cd+d2)

\(\Leftrightarrow\) 2012\(\le\) ( a2b2 +a2+b2+1)(c2d2+c2+d2+1)

\(\Leftrightarrow\) 2012 \(\le\) (a2+1)(b2+1)(c2+1)(d2+1) (đpcm)