Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : a2 + b2 \(\ge2ab\)
\(c^2+d^2\ge2cd\)
Do abcd = 1 nên cd =\(\dfrac{1}{ab}\)( dùng \(x+\dfrac{1}{x}\ge\dfrac{1}{2}\))
Ta có :\(a^2+b^2+c^2\ge2\left(ab+cd\right)=2\left(ab+\dfrac{1}{ab}\right)\ge4\)(1)
Mặt khác : a(b+c) +b(c+d)+d(c+a)
=(ab+cd)+(ac+bd)+(bc+ad)
=\(\left(ab+\dfrac{1}{ab}\right)+\left(ac+\dfrac{1}{ac}\right)+\left(bc+\dfrac{1}{bc}\right)\ge2+2+2\)
Vậy \(a^2+b^2+c^2+d^2+a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)\ge10\)
Lời giải:
a) Ta có:
\(a^2-b^2+c^2\geq (a-b+c)^2\)
\(\Leftrightarrow a^2-b^2+c^2\geq a^2+b^2+c^2-2ab-2bc+2ac\)
\(\Leftrightarrow 2ab+2bc\geq 2b^2+2ac\)
\(\Leftrightarrow ab+bc\geq b^2+ac\Leftrightarrow b(a-b)+c(b-a)\geq 0\)
\(\Leftrightarrow (a-b)(b-c)\geq 0\)
BĐT trên luôn đúng do \(a\geq b\geq c\)
Do đó ta có đpcm.
b) \(a^2-b^2+c^2-d^2\geq (a-b+c-d)^2\)
\(\Leftrightarrow a^2-b^2+c^2-d^2\geq (a-b)^2+(c-d)^2+2(a-b)(c-d)\)
\(\Leftrightarrow a^2-b^2+c^2-d^2\geq a^2+b^2+c^2+d^2-2ab-2cd+2ac-2ad-2bc+2bd\)
\(\Leftrightarrow 2(ab+cd+ad+bc)\geq 2(b^2+d^2)+2ac+2bd\)
\(\Leftrightarrow ab+cd+ad+bc\geq b^2+d^2+ac+bd\)
\(\Leftrightarrow b(a-b)+d(c-d)+d(a-b)-c(a-b)\geq 0\)
\(\Leftrightarrow (a-b)(b+d-c)+d(c-d)\geq 0\)
BĐT trên luôn đúng do:
\(\left\{\begin{matrix} d\geq 0\\ a\geq b\rightarrow a-b\geq 0\\ c\geq d\rightarrow c-d\geq 0\\ b\geq d\rightarrow b+d-c\geq 0\end{matrix}\right.\Rightarrow (a-b)(b+d-c)+d(c-d)\geq 0\)
Do đó ta có đpcm.
bn ơi bn viết
chữ nhỏ quá đó
bn ấn vào chữ x2
à bn mình nhìn rõ
nhưng có chữ
ko đọc được
a) \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
(Luôn đúng)
Vậy ta có đpcm.
Đẳng thức khi \(a=b=c\)
b) \(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2b+1+a^2-2a+1\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0\)
(Luôn đúng)
Vậy ta có đpcm
Đẳng thức khi \(a=b=1\)
Các bài tiếp theo tương tự :v
g) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}=6abc\)
i) \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=\dfrac{2}{\sqrt{ab}}\)
Tương tự: \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)
Cộng vế theo vế rồi rút gọn cho 2, ta được đpcm
j) Tương tự bài i), áp dụng Cauchy, cộng vế theo vế rồi rút gọn được đpcm
Giả thiết có: abc+bca+cda+dab = a+b+c+d+\(\sqrt{2012}\)
\(\Leftrightarrow\) (abc+bca+cda+dab-a-b-c-d)2 =2012
\(\Leftrightarrow\) \(\left[\left(abc-c\right)+\left(dab-d\right)+\left(bcd-b\right)+\left(cda-a\right)\right]^2\) = 2012
\(\Leftrightarrow\) \(\left[c\left(ab-1\right)+d\left(ab-1\right)+b\left(cd-1\right)+a\left(cd-1\right)\right]^2\) = 2012
\(\Leftrightarrow\) \(\left[\left(ab-1\right)\left(c+d\right)+\left(ab-1\right)\left(a+b\right)\right]^2\) = 2012
Áp dụng BĐT Bunhia cho 2 cặp số: (ab-1 ; a+b);(cd-1 ; c+d)
Ta có: \(\left[\left(ab-1\right)\left(c+d\right)+\left(ab-1\right)\left(a+b\right)\right]^2\) \(\le\) \(\left[\left(ab-1\right)^2+\left(a+b\right)^2\right]\left[\left(cd-1\right)^2+\left(c+d\right)^2\right]\)
\(\Leftrightarrow\) 2012 \(\le\) ( a2b2-2ab+1+a2+2ab+b2) (c2d2-2cd+1+c2+2cd+d2)
\(\Leftrightarrow\) 2012\(\le\) ( a2b2 +a2+b2+1)(c2d2+c2+d2+1)
\(\Leftrightarrow\) 2012 \(\le\) (a2+1)(b2+1)(c2+1)(d2+1) (đpcm)
Ta có : \(a^2+b^2+c^2+d^2+a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)\)
\(a^2+b^2+c^2+d^2+ab+ac+bc+bd+dc+da\)
\(=\left(a^2+b^2+c^2+d^2\right)+\left(ab+ac+bc+bd+dc+da\right)\)
Áp dụng bất đẳng thức Cauchy ta có :
\(a^2+b^2+c^2+d^2\ge4\sqrt[4]{a^2b^2c^2d^2}=4\sqrt[4]{\left(abcd\right)^2}=4\sqrt[4]{1^2}=4\)(1)
\(ab+ac+bc+bd+dc+da\ge6\sqrt[6]{a^3b^3c^3d^3}=6\sqrt[6]{\left(abcd\right)^3}=6\sqrt[6]{1^3}=6\)(2)
Từ (1) và (2) => \(\left(a^2+b^2+c^2+d^2\right)+\left(ab+ac+bc+bd+dc+da\right)\ge4+6=10\)
hay \(a^2+b^2+c^2+d^2+a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)\ge10\)( đpcm )
Đẳng thức xảy ra <=> a = b = c = d = 1
Áp dụng bất đẳng thức cosi với 4 số a,b,c,d không âm
\(\frac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\)
Mà \(abcd=1\)
\(\Rightarrow\frac{a+b+c+d}{4}\ge1\)
\(\Rightarrow a+b+c+d\ge4\)
Có abcd=1
=> a2 . b2 . c2 . d2 = 1
Áp dụng bất đẳng thức cosi với 4 số không âm a2, b2, c2, d2 có
\(\frac{a^2+b^2+c^2+d^2}{4}\ge\sqrt[4]{a^2b^2c^2d^2}\)
\(\Leftrightarrow\frac{a^2+b^2+c^2+d^2}{4}\ge1\)
\(\Rightarrow a^2+b^2+c^2+d^2\ge4\) ( 1 )
Ta có
\(a+b+c+d\ge4\) ( 2 )
\(\Leftrightarrow\left(a+b+c+d\right)^2\ge16\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bc+2bd+2cd\ge16\)
Cộng ( 1 ) và ( 2 ) ta có
\(2\left(a^2+b^2+c^2+d^2+ab+ac+ad+bc+bd+cd\right)\ge20\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+ab+ac+bc+bd+ad+cd\ge10\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)\ge10\) ( đpcm )