K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2019

\(a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)\)

\(=ab+ac+bc+bd+dc+da\)

Áp dụng BĐT AM-GM ta có:

\(a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)\ge6.\sqrt[6]{ab.ac.bc.bd.cd.ad}=6\sqrt[6]{a^3b^3c^3d^3}=6.\sqrt[6]{1}=6\)Dấu " = " xảy ra <=> a=b=c=d=1

8 tháng 3 2017

abcd = 1 \(\Rightarrow\hept{\begin{cases}ab=\frac{1}{cd}\\ac=\frac{1}{bd}\\bc=\frac{1}{ad}\end{cases}}\)

Áp dụng bđt AM-GM ta có:

A = \(a^2+b^2+c^2+d^2+a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)\)\(=\left(a^2+b^2+ab\right)+\left(c^2+d^2+cd\right)+ac+bc+bd+ad\)

\(=\left(a^2+b^2+ab\right)+\left(c^2+d^2+cd\right)+\left(\frac{1}{bd}+bd\right)+\left(\frac{1}{ad}+ad\right)\)

\(\ge3\sqrt{a^2.b^2.ab}+3\sqrt{c^2.d^2.cd}+2\sqrt{\frac{1}{bd}.bd}+2\sqrt{\frac{1}{ad}.ad}\)

\(\Leftrightarrow A\ge3ab+3cd+2+2\)\(=\frac{3}{cd}+3cd+4\ge2\sqrt{\frac{3}{cd}.3cd}+4=6+4=10\)

Dấu "=" xảy ra khi a = b = c = d = 1

8 tháng 3 2017

cố gắng giúp mình nha

30 tháng 9 2017

Áp dụng bđt Cô-si: \(a^2+b^2+c^2+d^2\)\(\ge4\sqrt[4]{a^2.b^2.c^2.d^2}\)\(=4\sqrt[4]{\left(abcd\right)^2}=4\sqrt[4]{1^2}=4;\)

\(a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)=ab+ac+bc+bd+dc+da\)

\(\ge6\sqrt[6]{ab.ac.bc.bd.dc.da}=6\sqrt[6]{\left(abcd\right)^3}=6\sqrt[6]{1^3}=6\)

=>\(a^2+b^2+c^2+d^2\)\(a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)\ge4+6=10\)

Dấu "=" xảy ra khi a=b=c=d=1

4 tháng 10 2019

Từ gt =>

\(\frac{1}{1+a}\ge\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)+\left(1-\frac{1}{1+d}\right)\)= \(\frac{b}{1+b}+\frac{c}{1+c}+\frac{d}{1+d}\)\(\ge3\sqrt[3]{\frac{bcd}{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}\)

( Theo Cô-si )

Vậy :

\(\left\{{}\begin{matrix}\frac{1}{1+a}\ge3\sqrt[3]{\frac{bcd}{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}\ge0\\\frac{1}{1+b}\ge3\sqrt[3]{\frac{cda}{\left(1+c\right)\left(1+d\right)\left(1+a\right)}}\ge0\\\frac{1}{1+c}\ge3\sqrt[3]{\frac{dca}{\left(1+d\right)\left(1+c\right)\left(1+a\right)}}\ge0\\\frac{1}{1+d}\ge3\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\ge0\end{matrix}\right.\)

=> \(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\ge81\frac{abcd}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\Rightarrow abcd\le\frac{1}{81}\)

8 tháng 4 2016

ngu nguoi

8 tháng 4 2016

ngu nguoi