Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
abcd = 1 \(\Rightarrow\hept{\begin{cases}ab=\frac{1}{cd}\\ac=\frac{1}{bd}\\bc=\frac{1}{ad}\end{cases}}\)
Áp dụng bđt AM-GM ta có:
A = \(a^2+b^2+c^2+d^2+a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)\)\(=\left(a^2+b^2+ab\right)+\left(c^2+d^2+cd\right)+ac+bc+bd+ad\)
\(=\left(a^2+b^2+ab\right)+\left(c^2+d^2+cd\right)+\left(\frac{1}{bd}+bd\right)+\left(\frac{1}{ad}+ad\right)\)
\(\ge3\sqrt{a^2.b^2.ab}+3\sqrt{c^2.d^2.cd}+2\sqrt{\frac{1}{bd}.bd}+2\sqrt{\frac{1}{ad}.ad}\)
\(\Leftrightarrow A\ge3ab+3cd+2+2\)\(=\frac{3}{cd}+3cd+4\ge2\sqrt{\frac{3}{cd}.3cd}+4=6+4=10\)
Dấu "=" xảy ra khi a = b = c = d = 1
Áp dụng BĐT Bunhiacopxki , ta có:
Với a,b,c,d >0
\(\left(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\right)\left[a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)\right]\ge\left(a+b+c+d\right)^2\)
\(\Rightarrow\left(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\right)\ge\frac{\left(a+b+c+d\right)^2}{ab+bc+cd+da+2ca+2bd}\)
Ta cần chứng minh :
\(\left(a+b+c+d\right)^2\ge2\left(ab+bc+cd+da+2ac+2bd\right)\)
\(\Leftrightarrow a^2+b^2+c^2+d^2\ge2ca+2bd\)
\(\Leftrightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\)(đúng)
\(\Leftrightarrow dpcm\)
Mấy cái này ko gọi là bđt thì gọi là cái gì @@ Chẳng lẽ là "không đẳng thức" :v
\(abcd=1;ab=\frac{1}{cd};ad=\frac{1}{bc};ac=\frac{1}{bd}\)
Ta có : \(a^2+b^2+c^2+d^2+a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)\)
\(=a^2+b^2+c^2+d^2+ab+ac+bc+bd+dc+ad\)
\(=a^2+b^2+c^2+d^2+\frac{1}{cd}+cd+\frac{1}{bd}+bd+\frac{1}{bc}+bc\)
\(\ge4\sqrt[4]{abcd}+2\sqrt{\frac{1}{cd}.cd}+2\sqrt{\frac{1}{bd}.bd}+2\sqrt{\frac{1}{bc}.bc}\)(Cauchy)
\(=4+2+2+2=10\)(đpcm)
Dấu"=" xảy ra \(\Leftrightarrow a=b=c=1\)
Áp dụng bđt Cô-si: \(a^2+b^2+c^2+d^2\)\(\ge4\sqrt[4]{a^2.b^2.c^2.d^2}\)\(=4\sqrt[4]{\left(abcd\right)^2}=4\sqrt[4]{1^2}=4;\)
\(a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)=ab+ac+bc+bd+dc+da\)
\(\ge6\sqrt[6]{ab.ac.bc.bd.dc.da}=6\sqrt[6]{\left(abcd\right)^3}=6\sqrt[6]{1^3}=6\)
=>\(a^2+b^2+c^2+d^2\)\(a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)\ge4+6=10\)
Dấu "=" xảy ra khi a=b=c=d=1