K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2015

\(a^2+b^2+c^2+d^2+e^2-e\left(a+b+c+d\right)\)

\(=\left(a^2-ae+\frac{1}{4}e^2\right)+\left(b^2-be+\frac{1}{4}e^2\right)+\left(c^2-ce+\frac{1}{4}e^2\right)+\left(d^2-de+\frac{1}{4}e^2\right)\)

\(=\left(a-\frac{e}{2}\right)^2+\left(b-\frac{e}{2}\right)^2+\left(c-\frac{e}{2}\right)^2+\left(d-\frac{e}{2}\right)^2\ge0\)

\(\Rightarrow a^2+b^2+c^2+d^2+e^2\ge e\left(a+b+c+d\right)\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=\frac{e}{2}\)

10 tháng 10 2016

\(\frac{e}{2}\)

tk minh nhe

moi nguoi

xin do

8 tháng 10 2017

a) \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

(Luôn đúng)

Vậy ta có đpcm.

Đẳng thức khi \(a=b=c\)

b) \(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2b+1+a^2-2a+1\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0\)

(Luôn đúng)

Vậy ta có đpcm

Đẳng thức khi \(a=b=1\)

Các bài tiếp theo tương tự :v

g) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}=6abc\)

i) \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=\dfrac{2}{\sqrt{ab}}\)

Tương tự: \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)

Cộng vế theo vế rồi rút gọn cho 2, ta được đpcm

j) Tương tự bài i), áp dụng Cauchy, cộng vế theo vế rồi rút gọn được đpcm

15 tháng 9 2016

\(Bdt\Leftrightarrow\left(a^2+b^2+c^2\right)\left(\text{∑}\frac{a}{a^2+2b^2+c^2}\right)\ge\frac{3\left(a+b+c\right)}{4}\left(1\right)\)

Ta dùng Bđt Bunhiacopski

\(VT\left(1\right)\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{\text{∑}a^3+2\left(ab^2+bc^2+ca^2\right)+\left(a^2b+b^2c+c^2a\right)}\)

Vậy ta cần chứng minh \(\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{\text{∑}a^3+2\left(ab^2+bc^2+ca^2\right)+\left(a^2b+b^2c+c^2a\right)}\ge\frac{3}{4}\left(2\right)\)

Thật vậy \(\left(2\right)\Leftrightarrow\text{∑}a^3+\left(a^2b+b^2c+c^2a\right)\ge2\left(ab^2+bc^2+ca^2\right)\)

Bđt này luôn đúng theo Cauchy vì \(a^3+c^2a\ge2a^2c\)

-->Đpcm

 

 

15 tháng 9 2016

đề thế này \(\frac{ab^2}{a^2+2b^2+c^2}+\frac{bc^2}{b^2+2c^2+a^2}+\frac{ca^2}{c^2+2a^2+b^2}\le\frac{a+b+c}{4}\) ak

a: \(BE^2-CE^2=BD^2+DE^2-DE^2-CD^2=BD^2-CD^2\)

b: \(BE^2-CE^2=BD^2-CD^2=BD^2-AD^2=BA^2\)

13 tháng 3 2020

Sai đề, check (a;b;c;d) =(1;0;3;0)

P/s: Sao chép lại đề: (Để chắc ăn mình không nhìn nhầm):

"Chứng minh a2-b2+c2-d2>=(a-b+c-d)2

với a, b, c, d>=0"

8 tháng 5 2019

Vì a;b;c là 3 cạnh của tam giác nên mỗi nhân tử của VP đều dương,áp dụng bđt Cauchy:

\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\frac{a+b-c+b+c-a}{2}=b\)

\(\sqrt{\left(b+c-a\right)\left(a+c-b\right)}\le\frac{b+c-a+a+c-b}{2}=c\)

\(\sqrt{\left(a+c-b\right)\left(a+b-c\right)}\le\frac{a+c-b+a+b-c}{2}=a\)

Nhân theo vế => ddpcm "=" khi a=b=c

8 tháng 5 2019

Câu hỏi dài nên mỗi ý mk làm thành 1 câu nha