K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2016

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\left(\frac{a+b}{c+d}\right)^2\left(1\right)\)

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\left(đpcm\right)\)

26 tháng 9 2015

Có: \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)(Tính chất dãy tỉ số bằng nhau)

=> \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{a^2+c^2}{b^2+d^2}\)(Tính chất dãy tỉ số bằng nhau)

=> \(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{a^2+c^2}{b^2+d^2}\)

=> Đpcm


Có: \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)(Tính chất dãy tỉ số bằng nhau)

=> \(\frac{a^n}{b^n}=\frac{c^n}{d^n}=\frac{\left(a+c\right)^n}{\left(b+d\right)^n}=\frac{a^n+c^n}{b^n+d^n}\)(Tính chất dãy tỉ số bằng nhau)

=> \(\frac{\left(a+c\right)^n}{\left(b+d\right)^n}=\frac{a^n+c^n}{b^n+d^n}\)

=> Đpcm

12 tháng 12 2016

Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dung tính chất của dãy tỉ số bằng nhau:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)

BÌnh phương các vế ta được:

\(\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\left(\frac{a+b}{c+d}\right)^2\)

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\left(\frac{a+b}{c+d}\right)^2\)

\(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)(đpcm)

16 tháng 12 2018

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(b,Đặt:a=bk;c=dk\)

\(\frac{a}{3a+b}=\frac{bk}{3bk+b}=\frac{b.k}{b\left(3k+1\right)}=\frac{k}{3k+1};\frac{c}{3c+d}=\frac{dk}{3dk+d}=\frac{d.k}{d\left(3k+1\right)}=\frac{k}{3k+1}\)

\(\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)

\(c,\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}.Đặt:a=ck;b=dk\)

\(\frac{ac}{bd}=\frac{ckc}{dkd}=\frac{c^2}{d^2}\)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{c^2k^2+c^2}{d^2k^2+d^2}=\frac{c^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{c^2}{d^2}.Vậy:\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)

\(d,Đặt:a=bk;c=dk\)

\(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2}{d^2}và:\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\frac{b^2k^2-2kb^2+b^2}{d^2k^2-2kd^2+d^2}=\frac{b^2\left(k^2-2k+1\right)}{d^2\left(k^2-2k+1\right)}=\frac{b^2}{d^2}\)

\(Vậy:\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

16 tháng 12 2018

Mình giải câu a) thôi nhé, những câu còn lại bạn làm tương tự như mình thôi

a) Đặt a/b=c/d=k

suy ra: a=kb và c=kd

a/b=kb/b=k (1)

a+c/b+d=kb+kd/b+d=k(b+d)/b+d=k (2)

Từ (1) và (2) suy ra: a/b=a+c/b+d

(những câu còn lại bạn đặt k rồi làm như mình nhé)

20 tháng 12 2017

Đặt\(\frac{a}{b}=\frac{c}{d}=k\left(k\in Q\right)\)

\(\Rightarrow\hept{\begin{cases}a=bk\left(1\right)\\c=dk\left(2\right)\end{cases}}\)

Ta lại có \(\frac{3a^2+c^2}{3b^2+d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(3\right)\)

Thay \(\left(1\right),\left(2\right)vào\left(3\right)có\)

\(\frac{3b^2k^2+d^2k^2}{3b^2+d^2}=\frac{k^2\left(3b^2+d^2\right)}{3b^2+d^2}=k^2\left(4\right)\)

\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\frac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\left(5\right)\)

Từ \(\left(4\right),\left(5\right)\Rightarrowđpcm\)

20 tháng 6 2017

Giải:

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

a, Ta có: \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\dfrac{b^2}{d^2}\) (1)

\(\dfrac{ab}{cd}=\dfrac{bkb}{dkd}=\dfrac{b^2}{d^2}\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)

b, Ta có: \(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\dfrac{b^2}{d^2}\) (1)

\(\dfrac{ab}{cd}=\dfrac{bkb}{dkd}=\dfrac{b^2}{d^2}\) (2)

Từ (1), (2) \(\Rightarrowđpcm\)

20 tháng 6 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\left(1\right)\)

a) Thay (1) vào đề:

\(VT=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\dfrac{b^2}{d^2}\)

\(VP=\dfrac{bkb}{dkd}=\dfrac{b^2}{d^2}\)

\(\Rightarrow VT=VP\)

\(\Leftrightarrow\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\rightarrowđpcm.\)

b) Thay (1) vào đề bài:

\(\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\dfrac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\dfrac{b^2}{d^2}\)

Theo câu a) \(\dfrac{ab}{cd}=\dfrac{b^2}{d^2}\)

\(\Rightarrow\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{ab}{cd}\rightarrowđpcm.\)