K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2015

\(\frac{a}{b}=\frac{c}{d}\)

=> \(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{5a}{5c}=\frac{2b}{2d}=\frac{5a+2b}{5c+2d}=\frac{3a-2b}{3c-2d}\)(Tính chất dãy tỉ số bằng nhau)

=> \(\frac{5a+2b}{5c+2d}=\frac{3a-2b}{3c-2d}\)

=> \(\frac{3c-2d}{5c+2d}=\frac{3a-2b}{5a+2b}\)

=> Đpcm

1 tháng 2 2017

a )\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{2a}{2c}\)

\(\frac{a-b}{c-d}=\frac{2a}{2c}\Rightarrow\frac{a-b}{2a}=\frac{c-d}{2c}\) ( đpcm)

b ) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{3a}{3c}=\frac{2b}{2d}=\frac{5a-3b}{5c-3d}=\frac{3a+2b}{3c+2d}\)

\(\Rightarrow\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+2d}\) ( đpcm )

20 tháng 2 2017

Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{5a}{5c}=\frac{2b}{2d}=\frac{3a-2b}{3c-2d}=\frac{5a+2b}{5c+2d}\)

\(\Rightarrow\frac{3a-2b}{5a+2b}=\frac{3c-2d}{2c+2d}\) ( đpcm )

6 tháng 9 2020

a) \(\hept{\begin{cases}\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a-3b}{5c-3d}\\\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{3a}{3c}=\frac{2b}{2d}=\frac{3a+2b}{3c+2d}\end{cases}}\)

\(\Rightarrow\frac{5a-3b}{5c-3d}=\frac{3a+2b}{3c+2d}\)

\(\Rightarrow\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+2d}\)

b) Chứng minh tương tự 

6 tháng 9 2020

ko biet nghen

5 tháng 9 2018

a) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a+4b}{3c+4d}=\frac{3a-4b}{3c-4d}.\)

\(\Rightarrow\frac{3a+4b}{3a-4b}=\frac{3c+4d}{3c-4d}\)

b) ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{5a}{5b}=\frac{2c}{2d}=\frac{4a}{4b}\)

Lại có: \(\frac{5a}{5b}=\frac{2c}{2d}=\frac{5a+2c}{5b+2d}\)

\(\Rightarrow\frac{4a}{4b}=\frac{5a+2c}{5b+2d}\Rightarrow\frac{5a+2c}{4a}=\frac{5b+2d}{4b}\)

5 tháng 9 2018

c) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

Lại có: \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)

\(\Rightarrow\frac{\left(a+b^2\right)}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)