Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Lại có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{8b^3}{8c^3}=\frac{125c^3}{125d^3}=\frac{a^3+8b^3+125c^3}{b^3+8b^3+125c^3}\) (1)
Ta thấy \(\frac{a^3}{b^3}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\) ( do \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) ) (2)
Từ (1) và (2) \(\Rightarrow\frac{a}{d}=\frac{a^3+8b^3+125c^3}{b^3+8c^3+125d^3}\left(=\frac{a^3}{b^3}\right)\left(đpcm\right)\)
Chứng minh: ( a+b+c/ b+c+d) 3 = a3 + b3 +c3 / b3 + c3+ d3 nhé
1. Vì \(\hept{\begin{cases}\left|x+5\right|\ge0\\\left(3y-a\right)^{2018}\ge0\end{cases}\Rightarrow\left|x+5\right|+\left(3y-a\right)^{2018}\ge0}\)
Dấu"=" xảy ra khi \(\hept{\begin{cases}x+5=0\\3y-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=\frac{a}{3}\end{cases}}}\)
Vào fx ghi được mà
đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=>a=bk;c=dk
Có \(\frac{ac}{bd}=\frac{bk.dk}{b\cdot d}=\frac{k^2\left(b\cdot d\right)}{b\cdot d}=k^2\) (1)
\(\frac{a^2+c^2}{b^2+d^2}=\frac{^{\left(bk\right)^2+\left(dk\right)^2}}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{\left(b^2+d^2\right)}=k^2\) (2)
từ 1 và 2 =>\(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+c^2}\)
--------------------------------------------------------------------------------------
nếu thấy đúng thì ấn đúng cho mình nhéTrần Thanh Hằng nếu thấy bài gì ko hiểu thì inbox cho mình nhé^^