Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Sử dụng điều kiện $abcd=1$ có:
\(M=\frac{a}{abc+ab+a+1}+\frac{ab}{abcd+abc+ab+a}+\frac{abc}{ab.cda+ab.cd+abc+ab}+\frac{abcd}{abc.dab+abc.da+abc.d+abc}\)
\(=\frac{a}{abc+ab+a+1}+\frac{ab}{1+abc+ab+a}+\frac{abc}{a+1+abc+ab}+\frac{1}{ab+a+1+abc}\)
\(=\frac{a+ab+abc+1}{abc+ab+a+1}=1\)
Vậy $M=1$
a) Xét ΔOIC và ΔABC có:
\(\widehat{ACB}\) : góc chung
\(\widehat{OIC}=\widehat{ABC}\) (đồng vị do JI//AB(gt))
=> ΔOIC~ΔABC(g.g)
=>\(\frac{OI}{AB}=\frac{CI}{BC}\)
=> BC.OI=AB.CI
b) Theo định lý đảo của định lý ta-let vào ΔBDC :
=> \(\frac{OI}{DC}=\frac{BI}{BC}\)
a) Tam giác ABC đều => Kẻ AH vuông góc với BC thì H là trung điểm của BC => BH = BC/2 = a/2
Tính được AH theo định lý Pytago: AH = a3√2a32
=> Diện tích của tam giác ABC là: 12.a3√2.a=a23√412.a32.a=a234
b) Xét các cặp tam giác bằng nhau dựa trên tam giác ABC đều vào tỉ số đề bài cho (CGC) em sẽ => Tam giác DEF có 3 cạnh bằng nhau => tam giác đều
c) Tam giác DEF và tam giác ABC đồng dạng
=> SDEF/SABC = (DE/AB)2
\(\frac{1}{1+2a+3ab+4abc}+\frac{2}{2+3b+4bc+bcd}+\frac{3}{3+4c+cd+2acd}+\frac{4}{4+d+2ad+3abd}\)
= \(\frac{1}{1+2a+3ab+4abc}+\frac{2a}{2a+3ab+4abc+abcd}+\frac{3ab}{3ab+4abc+abcd+2abacd}\)
\(+\frac{4abc}{4abc+abcd+2aabcd+3abcabd}\)
= \(\frac{1}{1+2a+3ab+4abc}+\frac{2a}{2a+3ab+4abc+1}+\frac{3ab}{3ab+4abc+1+2a}+\frac{4abc}{4abc+1+2a+3ab}\)
= \(\frac{1+2a+3ab+4abc}{1+2a+3ab+4abc}=1\)