Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BT: Cho a,b,c là 3 số cực dương thõa mản :
a+b-c/c=b+c-a/a=a+c-b/b
Tính M = (1+a/b)(1+a/c)(1+c/b)+2020
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{a+b+c}=1\) (vì a + b + c \(\ne\)0)
=> \(\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}}\) => \(\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}}\) => \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)
Khi đó, ta có:
M = \(\left(1+\frac{a}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)+2020\)
M = \(\left(\frac{a+b}{b}\right)\left(\frac{a+c}{c}\right)\left(\frac{b+c}{b}\right)+2020\)
M = \(\frac{2c}{b}.\frac{2b}{c}.\frac{2a}{b}+2020\)
M = \(\frac{8a}{b}+2020\) (xem lại đề)
\(\text{Ta có:
}a^2\left(b+c\right)-b^2\left(a+c\right)=2020\)
\(\Leftrightarrow a^2b+a^2c-b^2a-b^2c=0\)
\(\Leftrightarrow\left(a^2b-b^2a\right)+\left(a^2c-b^2c\right)=0\)
\(\Leftrightarrow ab\left(a-b\right)+c\left(a^2-b^2\right)=0\)
\(\Leftrightarrow ab\left(a-b\right)+c\left(a+b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left[ab+c\left(a+b\right)\right]=0\)
\(\Leftrightarrow\left(a-b\right)\left(ab+ac+bc\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\ab+ac+bc=0\end{cases}}\)
\(\text{Xét phần }ab+ac+bc=0,\text{ta có}\)
\(ab+ac=-bc\)
\(\Leftrightarrow a\left(b+c\right)=-bc\)
\(\Leftrightarrow a^2\left(b+c\right)=-abc\)
\(\Leftrightarrow2020=-abc\)
\(\Leftrightarrow abc=-2020\)
\(\text{Lại có: }ac+bc=-ab\)
\(\Leftrightarrow c\left(a+b\right)=-ab\)
\(\Leftrightarrow c^2\left(a+b\right)=-abc\)
\(\Leftrightarrow A=2020\)
Ta có :
Đặt \(\frac{a}{2019}\)= \(\frac{b}{2020}\)= \(\frac{c}{2021}\)= k
=> a = 2019k; b = 2020k; c = 2021k
M = 4(a-b).(b-c) - (c-a)
M = 4(2019k- 2020k). (2020k-2021k) - (2021k - 2019k)
M = 4.(-1)k.(-1)k - 2k
M = 4k2 - 2k
(Hình như mình thấy đề bạn có gì sai sai)
bn ko ghi ngoặc cái nào là mẫu số tử số thì sao ai hiểu đc