Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(a+b+c=3\Rightarrow a^2+b^2+c^2\ge3\)
Theo BĐT AM - GM ta có :
\(a^4+b^2\ge2a^2b\)
\(b^4+c^2\ge2b^2c\)
\(c^4+a^2\ge2c^2a\)
\(2a^2b^2+2a^2\ge4a^2b\)
\(2b^2c^2+2b^2\ge4b^2c\)
\(2c^2a^2+2c^2\ge4c^2a\)
Cộng từng vế BĐT ta được :
\(\left(a^2+b^2+c^2\right)^2+3\left(a^2+b^2+c^2\right)\ge6\left(a^2b+b^2c+c^2a\right)\)
\(\Rightarrow a^2b+b^2c+c^2a\le\dfrac{3^2+3^2}{6}=3\)
Theo BĐT Cauchy schwarz dưới dạng en-gel ta có :
\(VT\ge\dfrac{9}{6+a^2b+b^2c+c^2a}=\dfrac{9}{9}=1\)
Dấu bằng xảy ra khi \(a=b=c=1\)
Viết lại BĐT:\(\dfrac{a^2b}{a^2b+2}+\dfrac{b^2c}{b^2c+2}+\dfrac{c^2a}{c^2a+2}\le1\)
Áp dụng BĐT AM-GM:
\(VT\le\sum\dfrac{a^2b}{3\sqrt[3]{a^4b^2}}=\dfrac{1}{3}\left(\sqrt[3]{a^2b}+\sqrt[3]{b^2c}+\sqrt[3]{c^2a}\right)\)
\(\le\dfrac{1}{9}\left(3a+3b+3c\right)=1\)
Suy ra đpcm
áp dụng cauchy-schwarz dạng engel ta có :
\(\dfrac{a^2}{a+2b}+\dfrac{b^2}{b+2c}+\dfrac{c^2}{c+2a}\ge\dfrac{\left(a+b+c\right)^2}{a+2b+b+2c+c+2a}\)
\(=\dfrac{\left(a+b+c\right)^2}{3\left(a+b+c\right)}=\dfrac{3^2}{3.3}=1\) \(\Rightarrow\) (đpcm)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\text{VT}=\frac{\left ( \frac{a}{bc} \right )^2}{\frac{1}{c}}+\frac{\left ( \frac{b}{ca} \right )^2}{\frac{1}{a}}+\frac{\left ( \frac{c}{ab} \right )^2}{\frac{1}{b}}\geq \frac{\left ( \frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab} \right )^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\)
\(\Leftrightarrow \text{VT}\geq \frac{\left ( \frac{a^2+b^2+c^2}{abc} \right )^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\)
Theo hệ quả của BĐT AM-GM thì:
\(a^2+b^2+c^2\geq ab+bc+ac\)
\(\Rightarrow \text{VT}\geq \frac{\left ( \frac{ab+bc+ac}{abc} \right )^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{\left ( \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right )^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Ta có đpcm.
Dấu bằng xảy ra khi \(a=b=c\)
Áp dụngk BĐt cô-si, ta có
\(\frac{a^2}{b^2c}+\frac{b^2}{c^2a}+\frac{1}{a}\ge3.\frac{1}{c}\)
Tương tự , rồi cộng vào, ta có
\(2A+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\Rightarrow A\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(ĐPCM\right)\)
^_^
Đặt \(\left(a^{\dfrac{1}{3}};b^{\dfrac{1}{3}};c^{\dfrac{1}{3}}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow\left\{{}\begin{matrix}x,y,z>0\\xyz=1\\\left(a^3;b^3;c^3\right)\rightarrow\left(x^9;y^9;z^9\right)\end{matrix}\right.\)
\(BDT\Leftrightarrow\dfrac{1}{2x^9+3x^3+2}+\dfrac{1}{2y^9+3y^3+2}+\dfrac{1}{2z^9+3z^3+2}\ge\dfrac{3}{7}\)
Ta có BĐT: \(\dfrac{1}{2x^9+3x^3+2}\ge\dfrac{3}{7\left(x^{12}+x^6+1\right)}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x^2+x+1\right)\left(7x^9+x^6+8x^3-1\right)}{7\left(x^6-x^3+1\right)\left(x^6+x^3+1\right)\left(2x^9+3x^3+2\right)}\ge0\) *Đúng*
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(VT\ge\dfrac{3}{7}\left(\dfrac{1}{x^{12}+x^6+1}+\dfrac{1}{y^{12}+y^6+1}+\dfrac{1}{z^{12}+z^6+1}\right)\)
Cần chứng minh \(\dfrac{1}{x^{12}+x^6+1}+\dfrac{1}{y^{12}+y^6+1}+\dfrac{1}{z^{12}+z^6+1}\ge1\)
Đặt tiếp \(\left(x^6;y^6;z^6\right)\rightarrow\left(n;h;t\right)\) thì có:
\(\dfrac{1}{n^2+n+1}+\dfrac{1}{h^2+h+1}+\dfrac{1}{t^2+t+1}\ge1\forall nht=1;n,h,t>0\)
Cái này đã làm rồi Here - còn tại sao lại đặt và có BĐT phụ như vậy thì ko nói nhé :)
Đặt A=\(\sum\dfrac{a^3}{a+2b^3}\)
Ta có \(a^3+1+1\ge3a\Rightarrow a\le\dfrac{a^3+2}{3}\)\(\Rightarrow\sum\dfrac{a^3}{a+2b^3}\ge\sum\dfrac{a^3}{\dfrac{a^3+2}{3}+2b^3}=\sum\dfrac{3a^3}{a^3+6b^3+2}\)
Đặt \(a^3=x;b^3=y;c^3=z,taco:x+y+z\ge3\)
Mà A=\(3\left(\sum\dfrac{x}{x+6y+2}\right)=3\left(\sum\dfrac{x^2}{x^2+6xy+2x}\right)\ge3\dfrac{\left(x+y+z\right)^2}{\sum x^2+\sum6xy+2\left(x+y+z\right)}=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+4\left(xy+yz+zx\right)+2\left(x+y+z\right)}\)
Mà \(xy+yz+zx\le\dfrac{\left(x+y+z\right)^2}{3}\), đặt x+y+z=m
Ta có \(A\ge\dfrac{3m^2}{m^2+\dfrac{4}{3}m^2+m}\), cần \(\dfrac{3m^2}{\dfrac{7}{3}m^2+2m}\ge1\Leftrightarrow3m^2\ge\dfrac{7}{3}m^2+2m\Leftrightarrow\dfrac{2}{3}m\ge2\Leftrightarrow m\ge1\left(LĐ\right)\)
=> BDT cần chứng minh luôn đúng
dấu = xảy ra <=> a=b=c=1
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\text{VT}=\frac{a^3}{2b+3c}+\frac{b^3}{2c+3a}+\frac{c^3}{2a+3b}=\frac{a^4}{2ab+3ac}+\frac{b^4}{2bc+3ba}+\frac{c^4}{2ac+3bc}\)
\(\geq \frac{(a^2+b^2+c^2)^2}{2ab+3ac+2bc+3ba+2ac+3bc}=\frac{(a^2+b^2+c^2)^2}{5(ab+bc+ac)}\)
Theo hệ quả của BĐT AM-GM ta có:
\(a^2+b^2+c^2\geq ab+bc+ac\)
\(\Rightarrow \text{VT}\geq \frac{(a^2+b^2+c^2)(ab+bc+ac)}{5(ab+bc+ac)}=\frac{a^2+b^2+c^2}{5}\)
Ta có đpcm.
Dấu bằng xảy ra khi \(a=b=c\)
bài này hôm nọ bọn mình thi khảo sát nè :)